NJ Szer
Neumanm Jínoss
Stámitíg géplud banányi
Társaság
\$steqreèrttisischne Computer
Geselilschaffit

BEYOND NUMBER CRUNCHING

AUSTRIAN-HUNGARIAN CONHHERENCE

AUSTRIA

NTO STAT

Jotm wam Naumomm
Storciouty for Computting Sudiences

Austrian

Computer sociefy

BEYOHD MUMBER CRUICBIIIG

AUSTRIAN-HUNGARIAN CONNFERENCE

PROCEEDINGS

Edfors: V. Haase, E. Knuth
Published by the John von Neumann Societly for Computing Sciences
Sponsored by:
Austrian Camputar Sociedy (OCG)
Fedsaid Ministry of Seience and Researidh, Austria
Forsehungsgaselisehafit Joammum Gas mald.H.
Institute fur Informationsweraihaitiung Griaz
Hungarian Acadenty off Scimancess, Budapast
Jdpm vain Newamomin Societhy far Computiong Scienacess (NSSZII)
Ceatrall Suatistivedl Office, Hungaby
Arbeitsgemeinschafin fur Datwaveraribeitung (ADV)
Sceirmath

Copyright (c) 11988
Austrian Computer Society (OCG) and
John von Neumann Society for Computing Science ((UNSET))

II S B N $9638431 \quad 57$ II

PREFACE

The Third Austrian-Hungarian Informaties-Conference and the first to be held in Austria took place at SchloQ Retzhof near Graz. Like its predecessor at Sopron 1987 key researchers in the field of computer science from both countries were present. Nun numeric data processing issues were presented in 10 Ausstrian and 13 Humgarian papers in the field of cooperative and manmachine systems, graphics, databases and artificial intelligence.
We want to thank all supporting bodies and all individuals who have contributed to make this conference a success. A special "Dankeschön" goes to Mrs. Maria Toth for the organization of all Hungarian matters, including the printing of the proceedings, and to Ms. Amita femmer for keeping happy all participants as a conference secretary.

```
MTA = HIUNGARIAN ACADEMY OF SCIENCES
SZÁMALK = COMRZUIIING APPPLICATIONS AND SERWICE COMPANY
ELTE = EÖTVÖS LORÁND UNIVERSITTY
KFKI = CENTRAL RESEARCH INSTITIUTE FOR PHYSSICS,
        HUNGARIAN ACADEMY OF SCIENCES
BME = TECHNICAL UNIVERSITTY OF BUDAPEST
SZKII = COMIPUTER RESEARCH AND INNOVATION CENTRE
MTII = HUNGARIAN NEW/S AGENCY
```


CONTENTS

Beyond Number Crunehing - Special topies
Information based and computational complexity of physsically realizable machines
A. CSURGAY, Hunqarian Academy of Sciences, Burdapest 9
Adleorithms in Polynomial Ideal Theory and Geometry F. MiNKLUR, Research Imstitute for Symbolic Computation, Linz 15
Cooperative Systems
Hypr-Costoc: A computer-based teaching support system F. INUBER, Imstitute for Imformation Processing, Graz 29
SCDAS; Decision Suppont System for Group Decision Making; Imformation Processing Issues
A. LEWANDOWSKI, IIASA, Laxenburg 45
Cooperative officeL. CSABA = E. CSUHAJJ=VARJU, Computer and AutomationInsetitute, Hungarian Academy of Sciences, Buidapest57
Man-Machine Systems
HiBOL-2 as a paradigm for end-user-oriented computing
R. MiltiERRMEIR, H. WMERNHART, Institute of Informaties, University of Klagenfurt 71
Developing User Interfaces; A Symereetic Approaeh
G. HARING = \boldsymbol{F}. PENZ = ML TSCHELEGI, Imstitute of Statistics and Imformatics, Uniwersity of Wienna 81
Beyond data crunehing; A new approach tọ database interaction
E. $K N U T H$ - AM WAINA - Z. BODÖ - A. HERNÁDI,
Computer and Automation Imstritute, Hundegrian Academy of Sciences, Budapest 91
Compuitters as scientific co-workers; Scope and limits
B. MALLE - G. SCHULTER, Imstitute of Psyehology = 105
A first order theory of the leamable and knowledge communication
A. BENCZUR, Eörtvös Loránd Umiversity, Budlapest 113
Humgarian and German speaking computers for the blind
A. ARATO - T. VASP'ORI, Central Researeh Institute for
Physics, Humgarian Academy of Sciences, Buclapest

- Gi OLASZY, Limguistic Imstitute, Hungearian Academy
of Sciences, Budapest 119
Graphics and Databases
Tomards a simple yet expressive picture description language WWD FELLNER - J.K. STOGETERE, Imstítute for Information Processing, Graz 127
"Orbis pictus" and the integrated CAD/CAM system
L. CSER - P. TAMAAS, Technical University of Budapest 139
EDDEN - a general purpose graphics editor environment
W. D. FELLNER - F. KAPPE, Imstítute for Information Processing, Graz 149
The imtegrated Geo-Imformation Sysstem INFOCAM/ORACLE
 Graz 163
PIGALILE an image and textual database management system
J. \mathbb{K} OMPHAZI - C. MOLNAR, Computter Research and Innovation Center, 171 Budapest
Artufificial Intelligence
Limits of logic - Computter epistemollogy
T. WAMOS, Computter and Autiomation Imatitute, Hungarian Academy of Sclences
A paradigm of logic programming and its impact on logic programming languages
M SZOITS, Computing Appllications and Service Company, Budapest 189
Computer aided generation, presentation and interpretation in the history of science and technollogy
Z. RUTTKAY - A. MARKUS, Compuuter and Automation Institute, 197
BRAINDEX - A PC-based medical decision support system
WHL HAASE - H. MOIK = G. PFURTSCHELLER = B. WILLEGGER Technical Umiwersity of Graz, G. SCHWVARZ, State Hospital, Graz 207
A frame-based approaeh to protocol enginearing
田. $\operatorname{ECSEDL-TOTH}$, Computer Researeh and Innovation Center, Budapest 217
Knowledge base management on the PC
I. $\mathrm{KOCH}, \mathrm{Computing}$ Applications and Service Company, Budapest 227
Towards an integrated view of data processing, artuficial intelingence and softwafe engineering
T. IKRAUTH, Central Researeh Imstitute for Physies, Hungarian Academy of Scliences, Buldapest 233179

CINFORRMAATION-BASED ANWD CCONPRUTATTIONNALL CCOONPREEXITY OF PHMSSICALLLY RIEALIZABLE MMACHINES

A. COSUIRGAY
Hungaxian Academy of sciences Rudapest, Roosemellt toer 9, M-1051

Abstracet. In our review computation iis considered as a physical process, defined by a Hamiltonian ((hamdware)) and iimitial conditions ((ssofftwwamel).. Imformation-based and computational complexities are iimtroduced. It iis shown that bounded propagation speed in planar digital machines does limit the computational power of parallelism. In the universe of binary strings the asymptotic limits of sequential deterministic Turing-machines can not be overcome. Probable mismatch between measurability and computability of physical quantities is exposed.

Key=werds. Computatiom,, Complexity,, Turing machimess., Bazaliel computing., Computability

I. PHYSICS AND COMPUTATION

Science has a history of synthetizing many phenomena inte a few and elegant theories.. Heat and sound were explained by the laws of motiom; electricity,magnetism and light by the lawa of electromaquettism. Quantum mechamics supplied the laws behind the whole chemistryy, and by explaining the interagtion of photoms and elementary particles a synthetizing theory ef quantum electrodynamics ((QEDD)) has emerigedi. Att this stage all phenomema of the physicall world can be explained by three laws:: QwD, gravitatiom and nuclear physiess. Recemt attemptes to synthetize these laws into a "grand unified theorix" are also promissing.

The gbseryed complexityy of natume cam be explaimed by adding adaquate algorithmss to the lawss, whicth startimes from an in intial state and appilyiung the laws wowll calcunlatte, thuss predicte the meassured datan. Whe use machuimes to executte ther allgexithms.

Compliaxituy shounld be graspped by ounc machtirness. Boundining in bitts Of informatition increasses the megattive off thee thermodiynamioc entrepopy ("negentropy")) byy att leasth NI.)lim. Im every momente off tirne the informattiom allreadjy canptumerd iss representerd by
空 もimpo.

In our machines there is an unchangable time-invariant structure,, defining a Hamiltoniam, carved into the lattice, called hardware,, and an easily changable dynamics of photoms and electrons is superimposed on it," the initial condition of which is defined by the programs,, called software. All machimes,, digitall,, analog or hybrid,, are defined by a Hamiltomiam,, which can be programmed by implementing an initial state on it.

Computation is a physical process,, obeying the laws of physics. However,, the lavis should be formulated in terms of computable algorithms,, which depend on the lav/s.. We face a mutual determimatiom.

II. THE UNIVERSE OF BINARY STRINGS

Mapping of a binary string into another one, i.e. a program written in a formal language,, can be represented by a binary string as well. Thus recursive functions,, even formal languages and Turing-machines can be considered as elements of the set of binary strings..

Thus binary strings form a ""universe" ", in which all observatuianst, and theorems are binary strings.. In case of a computer one string defines another when it is a program for the computer to calculate the second string.

Information-based complexity of a binary string is defined to be the shortest program that makes the computer to ontput the string. Any string of length n can be calculated by putting it directly into a program as a table, thus the complexity is less or equal to the length of a string. Kolmogrmo((1965)) and Chaitin ((1966)) proposed to call random those strings of length n whose complexity is appoximately n.

Solomonoff and Chaitin used the notion of information-based complexity to formulate the situation that a researcher faces when he has made observations and wishes to understand them and make predictioms. He searches for a theory. We consider his observations to be represented by a binary string, and the theory to be a program that ouputs the string. Scientists consider the simplest theory to be the best one,, and that if a theory is too "ad hoc"', it is useless. The simpler the theory", the shorter the program, thus the information grasped by the string can be squeezed into a smaller space..

The relevance of this notion to information processimgj, storage and retrieval is obvious:: if a binary sequence can be described by a short program, then this means that the information content of it can be "'squeezed" into small space. Informationbased complexity has a spatial character.

If we try to recover the compressed sequence we have to be able to carry out the necessary computations. Informationbased complexity sketched above does not say anything about the time necessary to compute the sequence from its generating program. In information processing a different kind of complexity", the so-called computational one is widely applied to describe the number of steps necessary to run a program, to perform an algoritum.

Let us pose the problem of the algorithmic calculation of the shortest program that will generate a güx/en series, i.e., the problem of finding the information-based complexityy.. It has been shown that the computational complexity of this problem is undecidable, i.e, there is no such a solution of this problem which would terminate in finite steps..

Neverthelless,, the universe of binary strings is an extremely rich universe.. The Turing-Church Thesis tells us that Turingmachines, formal languages and recursive functions are isomorph sets..

Turing-machines are sequential.. This has an impact on the computational complexity of problems solved on them,

III. FULIL PARALLELISM IS EOUIVALEMNI TO TURIMGG MACHDRESS

There were some hopes that by full parallelism, i.e. by machimes in which arbitrary number of bits can be processed at any instant," the asymptotic blow/-up of a number of important algorithms could be overcome. This would mean that problems of NP-hard computational complexity could be solved by polinomial algoritums..

We have looked at a modell, introduced by Chazelle and Monier," which exploit the possibility of unbounded parallelism whirle trying to remain realistic. (Most of the old models contradict basic laws of physics by making the assumption that the transmission of information is instantanmouss))

It is a model for planar,, digital computing devices, and the propagation speed of information is bounded by a constamt.
In this model

- the information is digital ((binary)) and encoded by the value of a physical parameter at specified times and locatioms;
- a circuit computes a boolean function
- the size of a problem is the total number of input and output bits;
- a circuit is a planar layout of a directed graph, where the nodes are finite-state-automata ((FFA)) and the edges are wires. The inputs and outputs of the FSAs are boolean values stored at the endpointes of the wires, and we can assume long wires to be decomposed into unit-length segments connected by nodes computing the identity functiom. This allows us to associate each wire with exactly one variable, and thus assume that it has unit bandwithloj;
- communicating information with the outside of the circuit takes place at special nodes called I/O ports and located on the boundary of the circiutti;
- both the area A and the time of computation T have quantized units,, usually denoted by fland \mathbb{I}.. A node performs an operation in $2 a t$ least unit time \mathfrak{F}, and it has an area at least λ^{2};
- wires have width at least λ, and they transmit information at bounded speed.

The model is a physical parallel model,, since an arbitrary number of bits is processed at any instamt.. It can be considered to describe any planar," digitall, physical machime.

It has been shown that any model described above,, solving a problem of size N in time T and area A can be simulated on a two-dimensional Turing mechine in sequential time $T=0\left(\operatorname{Nari}^{2}\right)$, using the same area," and vica versa," any deterministic Turing machine which computes a function in time T with a tape of length L can be simulated on our model-circuit of area $\mathbf{O}(\mathrm{I})$) in time $\mathbf{O}(\mathbf{T})$..

Thus the high parallelism does not change the class of computational complexity.. In physical machines there exist a relation between the time of computation and the area that can be active during this time. From an asymptotic point of view any physically realizable digital machine is polynomially equivalent to sequential machimes,, e.g. to deterministic Turing machimes..

As a consequence not only the uncomputable ((e.g, halting.g)) problems bat also the NP-hard problems remain intractable even with the use of an unbounded amount of digital hardwame.

IV. COMPUTABILITY AND MEASURABILITY

In the binary universe there are well-posed mathematical problems,, e.g. the halting problem, or the set of noncomput= able numbers,, which cannot be solved by digital machimes, i.e. there is no algorithm which would solve the problem by a terminating program. Noncomputability depends neither on computers nor on languages. Computability is an attribute of the number itself, and not how that number is presentted, and noncomputable numbers are dense in the reals," because the cardinality of the set of programs is equal to the set of integers,, which is smaller than the cardinality of the set of real numbers..

In physics each real number is considered to be'measurabie, at least in principle. Is it a prejudice that every measurable quantity should be computable,, or w / e have to accept that the universe of binary strings is not rich enough to reflect the observed complexity of nature," i.e. there are measurable numbers noncomprutrablile.

In case of noncomputability two cases should be distimgraissłedi:
 yet, or ((iii)) we can prove that no solution does exist in the universe of binary strings," like in case of the halting problem.

Examples have been presented in which physical quantities can be measured with given accuray", on the other hand they cannot be computed with given accuracyr.

It is suggested that universal machines covering broader sets then digital machines should be looked for. Others suggest that the binary universe is rich enougin, and the complexity can be grasped by inventing new models of evolution reflecting the self-organization of nature.. Active research is going on in both directiams..

REFERENCTES

Special Issue of Foundations of Physicss,/ Vol. 16 " No $\boldsymbol{6}_{\prime \prime} 1986$
R.P.Feynmam,, Quantum Mechanical Computerss,, pp. 507-531; ;
R.Gerocin, J.B.Hartle,, Computability and Physical Theorïess,, pp. 533-550;
R.Landaer,, Compuiiiation and Physices,, pp. 551-564;
C.H.Bennett,, On the Nature and Origin of Complexitty y_{n}, pp. 585-592.
2
G.J.Chaittim, Information-Theoretic Computational Complexitey, IEEE Trans, on Information Theory/, IT-20, No.. $1_{\prime \prime}$ January/, 1974 3
 Related Complexity Results,, 13th ACM Symp.on Theory of Computimg/, ACM, May', 1981.
 IBM J,Res..Develop.. Voll. $32^{\prime \prime}$ No..1", January", 1988

Algorithms in Polynomial Ideal Theory and Geometry *)

Franz Winkler
Institut für Mathematik and Research Institute for Symbolic Computation Johammes Kepler Universiität, A-4040 Linz, Austria

Abstract

Many geometric problems can be formulated as problems about polynomials. By investigating the polynomial ideals associated with geometric problems one can often arrive at powerful decision algorithnms. Algorithms for solving problems in the theory of polynomials and polynomial ideals, such as the Gröbner basis method and the cylindrical algebraic decomposition method, are described and applied to a variety of specific geometric problems.

The goal of this paper is to show how powerful algorithms for dealing with polynomial equations and inequations can be used to solve a variety of geometric problems. The paper is structured according to specific problems, and the theory is developed as far as it is necessary to solve those problems.

Problem 1

Suppose we are given a finite number of polynomial equations

$$
\begin{equation*}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)=0 \tag{1}
\end{equation*}
$$

over some ground field K and we are interested in the solutions of this system. The ring of polynomials in the indeterminates $x_{1} i, \ldots, x_{n}$ over K is denoted by $K\left[x_{1}, \ldots \ldots, \hat{x}_{n}\right]$. We observe that whenever $\bar{x} \equiv\left(\bar{x} \bar{x}^{\mathrm{i}}, \ldots\right.$, , 好 $\left.h\right)$ is a solution of this system and the new polynomial
 then is also a solution of $f \equiv 0$. So the solutions of the system (1) are really the solutions of all polynomial equations $f=0$, where If is a linear combination of $/ f j, \ldots$, ,finh . The set of all such linear combinations forms an ideal in $\mathbb{K}\left[\left[x x_{1} i, \ldots, x, \ldots, m\right]\right.$ and we denote it by ideal $\left(f_{1}, \ldots . ., f m\right)$, the ideal generated by $f i, \ldots ., f m$. The polynomials f_{1}, \ldots, f_{m} are called a basis of this ideal. On the other hand, by Hilllbert's Basis Theorem, every ideal in $K \mid x i, \ldots, \notin n\}$ has a finite basis.

The first problem that we consider is a fundamental problem in the theory of polynomial ideals, namely the ideal memnlbership problem.

Problem 1:

decide: feideall($\left(f_{1}, \ldots . ., f f_{h}\right)$).
For solving Problem 1 we have to introdluce some notation first. If u is a power product, i.e. u is of the form $X_{1}^{i_{2}} \cdots \lim _{n}^{i_{H}}$ for some nonnegative integers $i j, \ldots, i_{n}$, then the degree of u

[^0]in x_{j} is defined as $\left.\operatorname{dag} \hat{x}_{j}(u)\right)=i j_{j,}$, and the degree of u is defined as $\left.\operatorname{deg}(u)\right)=\sum_{j=1}^{n} \operatorname{deg}_{x_{j}}(u)$. Let X be a linear ordering of the power products in the indeterninates $X_{1}, \ldots, \ldots, x_{m}$ which makes $1=x_{1}^{\theta} \cdots x \neq \frac{8}{n}$ the least power product and is compatible with multiplication, i.e. if $U_{\mathrm{i}}<\omega_{3}$, then for every power product u we have $u \cdot U_{i}\left\langle u \cdot U_{2}\right.$. Such an ordering \prec is called a term ordering. Examples of term orderimgs are the lexicographic ordering $\prec i$
\[

$$
\begin{aligned}
u \nprec i u^{\prime} \Longleftrightarrow & \text { exists } \mathbb{A}, 1 \leq \mathbb{k} \leq \mathbf{n}, \text { such that } \\
& \operatorname{deg}_{x_{r}}(u)=\operatorname{deg}_{\hat{x}_{T}}^{\wedge}\left(\left(u^{4}\right) \text { for all } \mathrm{r}<\mathbb{A} \text { and } \operatorname{deg}_{x_{k}}^{\wedge} J(u)\right) \leqslant \operatorname{deg}_{x_{k}}^{\wedge}\left(\left(u^{\prime}\right)\right),
\end{aligned}
$$
\]

or the graduated lexicographic ordering $\nless g$

$$
\left.u \prec_{g} u^{\prime} \Longleftrightarrow \operatorname{deg}(u)\right) \leqslant \operatorname{deg}\left(\left(u^{\prime} i^{*}\right)\right) \text { or }\left(\operatorname{deg}((u))=\operatorname{deg}\left(\left(i^{*}\right)\right) \text { and } u-\left\langle u^{\prime}\right)\right. \text {.. }
$$

From now on let α be some chosen term orderimg.
Every nonzero polynomial If can be uniquely decomposed into its leading term $\operatorname{lt}(f)$) (consisting of a leading coefficient $\mathrm{lc}((f)$) and a leading power product $\operatorname{lpp}(f))$) and its reductumn red $(f))$, where

$$
\begin{equation*}
f \equiv \operatorname{lc}((f)) \operatorname{lpp}(f))+\operatorname{red}((f)) \tag{2}
\end{equation*}
$$

and $\operatorname{lc}((f)) \neq 0$ and $\operatorname{lpp}((f))$ is greater (w.r.t. $-\checkmark)$ tham any power product occurring in red (f)).
Every set of polynomials $F \subseteq \operatorname{Cir}\left[\left[x x_{i}, \ldots . ., x_{n}\right]\right.$ induces a reduction relation $\longrightarrow p$ on
 and u a power product such that u 与pp ($f()$) occurs in $g i$ with coefficient a. In words: g \ is reducible to \mathfrak{g}_{2} modulo F. If no such u and If exist, then $\mathscr{g h l}^{2}$ is irreducible modulo F. This reduction relation is Noetherian, i.e. every chain $\left\|f f_{1} \longrightarrow p p,\right\| \mathcal{H}_{2} \longrightarrow \cdots$ terminattess. By
 reducible to h modulo F in finitely many steps. If $f \longrightarrow{ }^{2} g$ and g is irredmcible modulo F, them g is a normal form of ff modulo F..

It is quite obvious that whenever $f_{i 1} \rightarrow p \nRightarrow f_{2}$ them $f_{i 1}-f_{2}$ is a linear combination of the polynomials in F. Therefore, if $f \longrightarrow_{F}^{*} 0$ then If G ideal($\left(F^{*}\right)$). However, the reverse implication does not hold in general. Fortumattely one can always trammsfornm a given basis F of a polynomial ideal II into a so called Gröbner basis $F^{\prime \prime}$ of \mathbb{I}, which is characterised by the property that

$$
\begin{equation*}
f \in I \Longleftrightarrow f f-y p{ }_{F}^{\prime}, 00 \tag{3}
\end{equation*}
$$

An existence proof and also an algorithm for tramsforming any finite basis into a Gröbmer basis are given in [Buchberger 65], [Buchberger 155]. If the elements of a Gröbner basis are reduced with respect to each other, we get a minimal reduced Gröbner basis.

Theorem 1: Let \propto be a ternm ordering. For every ideal $I \subseteq \mathbb{C}\left[x_{j}, \ldots . ., x_{n}\right]$ there exists a Gröbner basis F of I.. The mimimnal reduced Gröbner basis of I is uniquely determuineed.

Now let us returm to Problem 1. In order to determime whether If G ideal (F)), where $F=\left\{f_{1}, \ldots, f_{m}\right\}$, we compute a Gröbner basis G for $I=$ ideal(F)) and reduce ff to a normal form $f^{\prime \prime}$ modulo G_{n} i.e. If $\rightarrow y_{G}^{\prime \prime} f^{\prime}$ and $f^{\prime \prime}$ is irreducible modulo G. Then If G ideal $(F)) \Longleftrightarrow f^{\prime}=0$.

As an example we consider the ideal I generated by $F=\{f f i, f f z, f f\}$ in $\mathbb{Q}[x, y, z]$, where $/ f_{1}=x z-x y^{2}-4 x^{2}-\frac{1}{4}, f z=y^{2} z+2 x+\frac{1}{2}, f 3=x^{2} z+y^{2}+{ }^{[1} x .$. We want to determime whether the polynomial If $=702 y^{2}-64 x^{6}+2788 x^{8}-348 x^{2}+395 x-10$ is contained in the ideal generated by F. As the term ordering we choose the lexicographic
ordering with $x \longleftrightarrow y \ltimes z$ ．The minimal reduced Gröbner basis for I is $G=\left\{g_{1}, g_{2}, g_{3}\right\}$ ， where

$$
\begin{aligned}
& g \dot{1}=z *-\frac{64}{65} x^{\frac{4}{4}}-\frac{432}{65} x^{3} 4--\frac{168}{65} x x^{2}-\frac{354}{65} x+4+\frac{88}{55}, \\
& 22 \equiv y^{2}-\frac{8}{13} x^{4} 4-\frac{54}{13} x^{3 \prime \prime}-\frac{8}{13} x x^{2} 4-\frac{17}{26} x, \\
& \text { 颠 }=x^{5}-\frac{27}{4}-x x^{4}+2 x^{3} \wedge-\frac{21}{16} x x^{2}+x+\frac{5}{32} \text {. }
\end{aligned}
$$

Problem 2

From a geometric point of view，we associate with every polynomial ideal I／the set of points $V((I)) \underline{C} K^{n}$ at which all the polynomials of I vanish，$V((I)$ ）is called an（affine） algebraic variety，the variety of I．．On the other hand，starting from an algebraic variety V we consider the set $\mathcal{A}(V)$ of all polynomials J which vanish on V ．．Clearly $I \subseteq \mathcal{A}(\mathcal{V}(I))$ ， but in general the inclusion is proper．In fact $\mathcal{A}((Q)(\mathbb{I}))$ ）is the radical of \mathbb{I} ，radicall $(I I)$ ，i．e． the set of all those polynomials If for which some power f^{n} is in I ．．

So geometrically，we are more interested in the radical memnlbership problem ff G $\operatorname{radicall}(I)$ ）than in the ideal membership problem．

Problem 2：

decide：$f \in \operatorname{radical}\left(f_{1}, \ldots, f_{m}\right)$ ．
By adapting Rabinowitsch＇s method of proving Hillbent＇s Nullstellensatz，the following theorem can be proved［Buchberger 85］．
 ideal $(f / 1, \ldots, f f m, z \cdot f-1)$ ，where z is a new variable．

In order to decide whether If $G \operatorname{radical}(F)$ ，where $F=\{f f i$ ，具．，$f m\}$ ，we compute a Gröbner basis G for $I=\operatorname{ideall}\left(f_{\mathrm{i}}, \ldots .,, f f m, z-f(1)\right.$ ）and check whether 1 G I．．So the radical membership problem is reduced to the ideal membership problem，which we have alreadly shown to be solvable．In fact，if G is the minimal reduced Gröbner basis for I，then testime whether $1 G \llbracket$ amounts to testing whether $1 G G$ ．

Problem 3

For given polynomials $f i, \ldots$, ffor we consider the homogeneous linear equation

$$
\begin{equation*}
f_{1} Z_{i 1}+\cdots+f_{m} \xlongequal[A n]{A}=0 \tag{4}
\end{equation*}
$$

in the unknowns $z i, \ldots .$. ，Zan h_{n} ．We are interested in the solutions of this equation in $K \backslash\left\{x_{i}, \ldots, x_{n}\right\}^{m}$ ．Every solution $\left(g_{1} i, \ldots, g_{m}\right) \in K \backslash\left(x_{1}, \ldots ., x_{k}\right\}^{m}$ is called a syzygy of （ $f i, \ldots ., f m)$ ．The set of all syzygies of a given sequence of polynomials forms a submodulle of $\left.K \backslash x i, \ldots, x_{n}\right\}^{m}$ over $K\left|x_{1} i, \ldots, x_{n}\right|$ ．Every such submodule has a finite basis．

Problem 3：

given：$\quad \mid f_{1}, \ldots, f_{m} \in \boldsymbol{F}\left[x_{1} \mathrm{i}_{1}, \ldots, x_{n}\right]$ ，
find：a basis for the moduale of syzyogies of $\left(f_{i}, \ldots . ., f f+2\right)$ ）．
Again，the Gröbner bases method can be used to solve this problenn．First a Gröbner basis $G=\{g i, \ldots-r i g k\}$ is computed for $I=\operatorname{ideal}(\mathbb{F})$ ，where $F=\{f \dot{f},, \cdots,=, f f m\}$ ．For G it
is very easy to construct a basis for the syzygies, see [Buchberger 85], [Winkler 86]]. Im a second step the basis of the syzygies of G is transffommed to a basis of the syzygies of F by the following theorem.

 and $F=Y \cdot G$. Let the rows of the matrix R be a basis of the modualle of syzygejess of G. Then the rows of the matrix

$$
Q=\left(\begin{array}{c}
I_{m}-\mathbf{Y} \cdot \mathbf{X} \\
\cdots \cdots \cdots \\
R \cdot X X
\end{array}\right)
$$

are a basis of the nodule of syzygies of F..

Problem 4

For a (finite) number of algebraic equatioms

$$
\begin{equation*}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)=0 \tag{5}
\end{equation*}
$$

we want to determine the common solutions of this systen of equatioms.. Usually ome wants to find these sollutions in the algebraic closure $\overline{\mathbb{K}}$ of the ground field \mathbb{K}..

Problem 4:
given: $\mid f_{1}, \ldots, \ldots, f_{n h} \in K\left[x_{u}, \ldots, X_{n} r\right]$,
find: \quad thlee sset aff ccommmoonsswduttownsooff/ $\mathrm{f}_{1}=\cdots=f_{\text {inn }}=\mathbf{0}$ over $\overline{\mathbb{K}}$.
Before we set out to generate the solutions to thiss problenm, we might want to kmowr whether the system of algebraic equations $/ f_{1}=\cdots=f_{m o}=0$ has amy solutioms alt all. This question can easily be answered once we have computed a Gröbmer basisis for the given polynomials.
 basis for ideall(F). Then the system of equations (5) is umsolwable (inn $\overline{\mathbb{K}}$) if amad ondy if $11 \in G$..

Now suppose that (5) is solvable. We might want determine whether thene finpitely or infinitely many solutions.

Theorem 5: Let F and G be as in Theorem 4. Them (5)) bus finitely mnamy soluatiforms if and
 x_{i}.

For really carrying out the elimination process, we compute the Grobmer basis with respect to the lexicographic orderimg. The following elimination propertyy of Groblmer bass has been observed in [Trinks 78]. It meams that the i-th eliminatiom ideal of ideal(Gr)) is generated by the polynomials in G that depend only on the variables zii, \ldots, Xdit $_{i}$.
 Then

$$
\operatorname{ideal}(G)) \cap K\left[x \dot{j}, \ldots, x_{i} \hat{i}\right] \equiv \operatorname{ideal}(G H K[x j, \ldots, x \hat{x} \hat{i}]) \text { for } 1 \leq \in \leq \text {, }
$$ where the ideal on the right hand side is formed in $\mathbb{A}^{\prime}\left[\left[x, 1, \ldots, 3, x_{i}\right] \mid\right.$.

As an example let us consider the same polymonialls as in the example to Prodblem 1. The minimal reduced Gröbner basis G does not contaim 1, so by Theorem 4 the systitem
of equations $f_{1}=f_{2}=f h_{3}=0$ is solvable in the algebraic closure of Q. Furthermone, by Theoremm 5 , this system of eqiations has finitelj mamy solutioms. The variables in the Gröbner basis G are totallly separated. An approximation of a root of ghe up to db 0.00001 is -0.128475 . This solution of $\overline{z z}=0$ can be continued to solutions of $\hat{g}=0$ and $g \dot{q}=0$, yielding the approximation ($-0.1284775,0.32111455,-2235566 \pi 118)$ for the original system of equatioms.

Problenn 5

A plane algebraic curve is the variety of a single bivariate polynomial [Walker 78). We want to compute the intersection of two plane algebraic curwes.

Problem 5:

givem: bivariate polymळunialls $/ \mathrm{ff}_{1}, 1 / \mathcal{F}_{2}$ specifying two plame algebraic curves $\mathrm{Ci}_{\mathrm{i}}, \mathrm{CCO}_{2}$, find: intersectiom of the two curves $C \lambda, C z$.

The points of intersection of the two curves $\mathrm{Ci}_{3}, \mathrm{Cl}_{2}$ are exactly the points satisfying the system of equations $f f_{1}=0, f_{2}=0$. So Problen 5 is reduced to problem 4.

As an example let us consider the two curves

$$
\int f_{1}=x^{4 *}+2 x^{2} y^{2} y+y^{4} 3+x 3 x x^{2} h y-y y^{3}
$$

$f_{2}=y^{4}+2 y^{3}+y^{2}-3 x^{2} y+2 x^{4}-3 x^{2}$

We compute the Gröbner basis G of $\left\{f_{1}, f_{2}\right\}$ w.r.t. to the lexicographic ordering, getting the basis polynomialls

$$
\begin{aligned}
& g_{1}=x^{1_{2}}+\frac{1003}{81} x^{18}+\frac{3724}{81} x^{8}-\frac{250}{3} x^{6}+\frac{2500}{81} x^{4}, \\
& y_{2}=x^{4} y-\frac{137214}{17689565} x^{10}-\frac{1173797}{17689565} x^{8}-\frac{92395111}{17689565}+\frac{3202095}{3537913} x^{4}, \\
& \xi_{3}=y^{2}+3 x^{2} y-\frac{20439297}{141516520} x^{18}-\frac{25351161}{141516520} x^{8}-\frac{464023179}{70758260} x^{1}+\frac{1629509811}{141516520} x^{4}-3 x^{2} .
\end{aligned}
$$

So the intersection variety of the two curwes consists of finitely many points. The coordinates of the intersection points are the solutions of the univariate equation $g)=0$. This equation has 9 different solutions, 4 of which are complex. One of the solutioms of $y \mathrm{i}=0$ is $\bar{X}=-\frac{5}{9} \downarrow \sqrt{2}$. Substitutimg \bar{x} into $\tilde{g}_{z}=0$ and solving for y yields $\bar{y}=-\frac{5}{9}$.

Problem 6

Many properties of an algebraic curve depend on the number and position of its singular points. A singular point is a point of multiplicity higher tham one.

Problem 6:

givem: a bivariate polymomial ff specifying a plame algebraic carwe C,
find: the singular points of the curve C.
The singular points of C are exactly those points, at which /f and the partial derivatives of f vanish. So the singular points are the solutions of the system

$$
f(x, y)=\frac{\partial f}{\partial x}(x, y)=\frac{\partial f}{\partial y}(x, y)=0 .
$$

Thus the detection of singularities is reduced to the solution of a system of algebraic equations.

As an example we consider the tacnode C_{3} (this is the curve C_{2} from Problem 5, shifted by 1 along the y-axis), specified by the equation $f(x, y)=2 x^{4}-3 x^{2} y+y^{2}=22 y^{3}+4 y y^{4} \equiv Q$ For computing the singular points of C_{3} we have to solve the system

$$
\begin{aligned}
f(x, y)) & =2 x^{4}-3 x^{2} y+y^{2}-2 y^{3}+y^{4}=0, \\
\left.\frac{\partial f}{\partial x}(x, y)\right) & =8 x^{3}-6 x y=0, \\
\frac{\partial f}{\partial y}(x, y) & =-33 x^{2}+2 y-6 y^{2}+4 y^{3}=0 .
\end{aligned}
$$

A Gröbner basis of this system w.r.t. the lexicographic ordering $(x \prec y)$ is

$$
\left\{x^{3}, x y, y^{2}-y+\frac{3}{2} x^{2}\right\} .
$$

So $C 3$ has two singular points with coordinates $(0,(0))$ and $(0,11)$.

Problen 7

Although an algebraic curve in general is given as the variety of a polynomial, for some applicatioms - for instamce drawing the curve on a screen - it is desirable to describe the curve by a suitable parametrizatiom. Rational parametrizatioms have been investigated extemsively in algebraic geometry. An irreducible curve O, i.e. a curve given by an irteduciblle polynomial $f(x c, y y))=0$, is rational iff there exist rational functions $\phi(A), \phi(A)$ of a param-
 a point of C, and (2) with a finite number of exceptions for every point ($x \rho, y A)$) of C the is a unique value A_{θ} of the parameter such that $X_{ब}=\phi\left(A_{\theta}\right), x_{\theta}=\phi\left(A_{\theta}\right)$.

Problen 7:

givem:- an irreducible polymomical f(x, wy) describing a ratiomal algebraic curve C,
find: a rationel parametrization $\phi(A), \phi((A))$ of C.
Let $f(x, y)$ be an irreducible polynomial of degree d describing an algebraie curve C. The genus of the curve C is defined as

$$
9 C=\frac{(d d-1))((d d d-2)}{2}-\frac{1}{2} \sum r_{i}\left(r_{i}-1\right),
$$

where the summation is over all points P_{i} of the curve C and r_{i} is the multiplicity of the

see [Walker 1978].) The genus is a measure of how much the curve is deficient from its maximum allowable limit of singularities (the genus can never be less tham 0). An algebraic plane curve C is rational if and only if $g \in \equiv 0$.

The simplest case in parametrizzing a rational curve occurs when the curve C, deseribed by the irreducible polynomial $f(x, y)$) of degree d_{n} has a ($d-1$)-ffolld point P.. W.I.o.g. P can be assumed to be at the origin (otherwise a linear tramsiformatiom is performed). In this case a line $y=\nmid x r$ through P intersects C in exactly one additional point Q,, yielding a parametrization of the curve.

As an example we consider the curve C_{1} of Problem 5. $C i$ is a curve of degree 4 having a triple point at the origin. The line $y=H x x^{\text {intersects }} C_{i}$ at the origin and at the additional point

$$
Q \equiv\left(\frac{\lambda^{3}-3 A}{A^{4}+2 A^{2}+1} ; \frac{A^{A}-3 A^{2}}{A^{4}+2 A^{2}+1}\right)!
$$

So

$$
\begin{aligned}
& x=\frac{A^{\lambda}-3 A}{A+2 A^{2}+1}, \\
& y \equiv \frac{A^{A}-3 A^{2}}{A^{A}+2 A^{2}+1}
\end{aligned}
$$

is a parametrization of C_{1}-.
A quartic curve of genus 0 can either have a trijple point or 3 double points. In the second case one chooses an additiomal simple point on the curve and passes conics throungth these 4 points of the curve. There will be exactly 1 free parameter in the equation of the conic, and by Bezoutt's theorem there will be exactly 1 additional point of intersection. So this additional point of intersection is uniquely determined by the free paranmeter in the equation of the conic, thereby leading to a paranetrization of the quartic curve. This idea can be generalized, see [Walker 1978], [Albhyyamkar,Bajaj 87].

Problem 8

The inverse problem is to talke the parametric equatioms for an algebraic plame curwe C and turn them into an algebraic equation defining this curve.

Problem 8:
given: $\quad x=\frac{\beta \geq}{q_{1}(t)}, y=\frac{B_{2}(t)}{q_{2}(t)}$,
a rational parametrizatiom of an algebraic plame curve C,
find: a polymonnial $f(x, x, y)$ describing the curve C.
This problem has been solved in [Arnon,Sederberg 85]. It requires to find the algebraic relationship between the variables x and y representimg the coordinates of the points in the parametric version of the curve C, given the algebraic relationshipss $x \cdot q_{i}(t)-p_{i}(t) \equiv$
 $K^{\prime}[a ; y]$. According to Theorem 6, this can be achieved by a Gröbner basis computationm.

As an example we consider the curve C) given parameturically by the equations

$$
X \equiv t^{2}-t, y \triangleq t\left(t^{2}=1\right) .
$$

Startimg from the relations $f f_{1}: t^{2}-x-1=0, \mathscr{R}_{2}: t^{3}-t-y=0$, we want to computte the relation between x and y. A Gröbner basis for the ideal generated by $\mathbb{f l}_{1}$ and \mathscr{f}_{2} with respect to the lexicographic ordering $x<y \leqslant t$ is

$$
\left\{t^{2}-X-1, x t-y, y t-x^{2}-x, y^{2}-x^{2}-x^{2}\right\}
$$

The intersection with $\mathrm{Q}[x, y]]$ yields $y^{2}=x^{8}+x_{x}^{R}$, which is indeed the polynomial describimg the curve C_{j}.

Problenn 9

Often a geometric statement can be described by polynomial equations over some ground field K. As an example we consider a special case of the Apollonios Circle Theroneem [Kutzler,Stifter 86]:

The altitude pedal of the hypothemuse of a right-anngled triamgle and the midpoints of the three sides of the triangle lie on a circle.

A possible algebraic formulation of this problem is
where

$$
\begin{aligned}
& h_{\dot{1}}=2 y_{y s}-y_{1} i=0 \\
& h_{z}=22 y 4-y_{1} i=0, H_{3} 3=22 y s-y_{2} 2=(0) \\
& h_{\dot{4}}=2 y_{y}-y_{z}=(0) \\
& h_{5}=\left(\left(y y_{7}-y_{3}\right)^{2}+y_{8}^{2}-\left((y)_{7}-y_{4}\right)^{2}-\left(y y_{8}-y_{8}\right)\right)^{2}=00 \\
& \left.h_{B} \equiv\left(y_{f} \text { ? }-y_{3}\right)^{2}+y_{8}^{2}=\left(y_{B}-y_{G}\right)\right)^{2} \sim y y_{7}^{2}=0 \\
& h_{i} \equiv(y y-y z i) y z+y i y i o=0
\end{aligned}
$$

> (\mathbb{E} iss midpoint of $C A(A)$,
> ($(F$ iss midpoint of $A \mathbb{A}(B)$),
> (($(G$ iss midpoint of $B C)$),
> (lleangth $E M M=$ length $E M O I)$),
> (length $E M I=$ length $G M(I)$,
> (H lies on $\mathbb{A}(B)$),
> ($C H$ perpendicular to $\mathbb{A}(\mathbb{B})$),
and
$C=\left(y_{7}-y_{3}\right)^{2}+y y_{8}^{2}-\left(y y_{7}-y_{6}\right)^{2}-\left(y_{8}-y i(0)\right)^{2}=0 \quad$ (length $E M=$ length $\left.\left.H W I\right)\right)$.
The polynomials $h j, \ldots ., h \neq$ are called the hypotheses and c is called the conclusion of the geometric statement.

In order to prove the theorem, it suffices to show that c vanishes on all the commom
 problem is reduced to Problem 2, which can be solved by a Gröbner basis computatiom, c is indeed in the radical of the hypothesis polynomials (in fact, it is in the ideal generated by the hypothesis polynomials), so the theorem is proven.

Usually a geometric theorem is true only after certaim degenerate sitmatioms have beem ruled out by a nondegeneracy or subsidiary condition. As for the hypotheser and the concliusion, we require that the subsidiary condition be expressible by a polymomiall, this
 comdition should not be so strong as to exclude all cases of the geometric constructiiom. So the problem becomes the following:

Problem 9:

decide: does there exist a polymomial 3 such that

and
$\left.\left(\left(3 x \in \bar{K}^{\wedge}\right)\right)(h \dot{i}(x))=\cdots=h_{m i}(x)=0 \mathrm{~A} s(x) \not \equiv 0\right)$?
If so, find such an s.
Sollutions for this geometry theorem proving problem are described in [Wu 84], [[CHnow,Scllhellter 85], [KKutzller,Stifter 86], [KKapur 86], [Winkler 88]. The primcipall problem with all these sollutions to the geometry theorem proving problenm is that theyy cam only deal with geometries over algebraically closed ground fields, e.g. complex geometry and not real geometry.

Problem 10

Finally let us turn to the question of deciding problems in real algebraic geometryy, where we do not only allow the predicates $=$ and \nexists, but also comparisoms $<$ and \leq. Thiss leads to the ellementary theory of real closed ffellds, see [van der Waerdem 71]. Modells for the ellememtary theory of real closed fields are the field of real numbers R and the field off real algebraic numbers.

The ellementary theory of real closed fields is decidable. Decision algorithms haw bem given in [TTarski 51], [Seiidenberg 54], and [Collins 75]. As an example of the cylimdericall allgebraic decommpossition method due to Collins we consider tline formula

$$
\phi) \equiv(3 x)(3 y))\left(\left(x^{2}+y^{\mathbb{A}}-4 \leqslant 0 A y^{\mathbb{A}}-2 x+2 \leqslant 0\right) .\right.
$$

The goal is to decide whether ϕ holds over the reals. In order to arrive at suel a decision, the plane is decomposed into connected regions, in which the signs of all the polymomialls

$$
A \equiv\left\{y^{2}+x^{2}=4,7^{2}-2 x+2\right\}
$$

occurring in the formula are constant. In a projection phase the variable y is eliminated by computing resultants and discriminants of the polynomials in A, leadino to

$$
A^{\prime} \equiv\left\{x^{2}+2 x=6, x^{2}=4, x-1\right\}
$$

The roots of the polynomials in A^{\prime} give a decomposition of the $x=$ axicis hato connected regions on which all the polynomials of A^{\prime} have constant slgns. Se in ofder to test the
signs of the polynomials in \mathbb{A}^{\prime} in any of these regions, a single sample point is sufficient. Now the decomposition of R^{1} is lifted to a decomposition of R^{2}. The polynomials in A are evaluated at the sample points and the roots of the resulting univariate polynomials are computed. From this information sample points for the regions in R^{2} can be computed, such that all the polynomials in \mathbb{A} have constant signs in every region. In our examplle sample points, e.g. $(\sqrt{\pi}-1,0)$, are found which satisffy all the conditions in (ϕ). Thus $\phi)$ is valid.

Referemces:

[Albhyaunkar, Bajaj 87] S.S. Abhyankar, C. Bajaji: Automncatic Parameterization of Ratüømal Curves and Surficices I: Conics and Conicoids, Techn. Rep., Comp. Sci. Dept., Puurdluee Univ. (1987)
 and Cubicoids, Techn. Rep., Comp. Sci. Dept., Purdme Univ. (1987)
 Plane Curves, Techn. Rep., Comp. Sci. Dept., Purdme Univ. (1987))
[Amnon,Sederberg 85] D.S. Arnon, T.Ww. Sederberg: Impplicit Equation ffor a Parameetriic Surfiace by Gröbner Basis, manuscript (1985)
[Buchberger 65] B. Buchberger: Ein Algorithmus zum Aufffimden der Basiselemente des Restklassenrimges nach einem nulldimemsiomalen Polymomniideeal, Dissertatiom, Univ. Innsbruck (1965)
[Buchberger 85] B. Buchberger: "Gröbner Bases: An Algoritbmic Methood] in Polymomitial Ideal Theory", in: Multidimemsional Systemns Theory, N.K. Bose (ed.), Reidel (1985))
[Chou,Schelter 85] S.-C. Chou, W.F.Schelter: "Proving Geometry Theorems with Rewrite Rules", J. Automnatuled Reasonimg 2, 253-273 (1985))
[Collins 75] G.E. Collins: "Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition", Automnata Theory and Formal Langwages (2nd GI Conferemce), LNCS 33, 134-183, Springer-Werlag (1975))
[Kapur 86] D. Kapur: "Geometry Theorem Proving Using Hillbent's Nullstellensatz", Proc. 1986 Symup. on Symblbolic and Allyebraic Computation, 202-208, ACM (1986)
[Kutzler,Stifter 86] B. Kutzler, S. Stifter: "Automated Geometry Theorem Proving Using Buchberger's Algorithm", Proc. 1986 Symup. on Symblbolic and Allyebraic Computadion, 209-214, AGM (1986))
[Seidemberg 54] A. Seidenberg: "A New Decision Method for Elementary Algebra", Amm. of Math. 60/2, 365-374 (1954))
[Tarski 51] A. Tarski: A Decision Method for Elementary Allegelona and Geometry 2nd ed., Univ. of California Press (1951))
[Trinks 78] W. Trinks: "Über B. Buchbergers Verfahren, Systeme algebraischer Gleichumgen zu lösen", J. of Numnlber Theory 10/44, 475-488 (1978)
[wan der Waerden 71] B.L. van der Waerdem; Algelbra $\llbracket_{\text {, }}$ Springer-Werlag (1971)]
[Walker 78] R.J. Walker: Algebraic Curves, Springer-Werlag (1978))
[Winkler 86] F. Winkler: Solution of Equatioms I: Polynomial Ideals and Gröbner Bases, Lecture Notes, Conf. on "Computers \& Mathematics", Short Course "Symbolic and Algebraic Computation", Stamford Univ. (1986)
[Winkler 88] F. Winkler: "A Geometrical Decision Algorithm Based on the Gröbner Bases Algoriithm", Proc.. 1988 Imterm. Symup. on Symnlbolic and Algebraic Computatiom, Rome, LNCS, Springer-Werlag (1988))
[Wu 84] Wu Wem-tsüm: "Basic Prinnciplles of Mechanical Theorem-Prowwimg in Elementary Geometry", J. Syst. Sci. \& Math. Sci. 4//3,, 207-23.5 (1984)

HYPER-COSTOC: A COMPUTER-BASED TEACHING SUPPORT SYSTEM

Friedrich Huber

Institute for Information Processing Graz ((IIG)) of the Graz University of Technology and the Austrian Computer Society Schiefisitattegasse 4a, A-8010 Graz
((e-mail: fhuber@tugiig. ©UCPI))

Abstract

I:: We propose the main architectural features of HYPER-COSTOC ((HC)) a new computer based teaching support system, parts of which are currently being developeed. We have called it HYPER-COSTOC because it is based on a database of lessons called COSTOC and because it has facilities which have a hypermedia flavor.. HC is an advanced CAI system which can retrieve and process,, in a non=linear fashiom,, structured molecules of instructional or information material networked together.. HC uses a mixture of presentation-type-CAI, object= oriented programming/, and query language techniques for university teachimg..

HC aims at a practical and viable approach within a university setting.. It comprises tools for the creatiom, distributiom, and usage of a variety of courseware in a fashion which is modular,, technology independemt,", easy to maintaim,, and which includes drill," self= test," exam and other modules.. HC should be geared to easy integration with a variety of instructional environments: as a support to traditional lecturestyle instruction as well as for the development of exploratory research enviromesmots..

[^1]
1. INTRODUCTTION

COSTOC is an international project which involves the production and implementation of computer seience courseware withoin undivensfity environment [$W 4 W 1$. Up to nown the word COSTOC has been an acuram for computer Supported Teaching Qf Compritern-ossivence. Since the techniques inherent to COSTOC go beyond the domain of computer science, we have now expanded this acronym to stand for;: eomputer Supporzed Teaching? of coursell

The COSTOC system is currentiy being used in about 20 educattionanl instiituitionss.. COSTOC includes a database of hundreds of one-howr lessons " with more than 250 topics within computer sciemce.. Starting from this courseware basis," HC should add many new faciillititiess, including better navigatiom,, browsimg/, window cross-talk as well as aspects of student modelilimg. It should be made clearr,, howevery, that the first implementation of HC will put little emphassiss on intelligent-CAI techniques ((e.g.", intelligent tutorimgg, inttellijgent student modelling)) because we believe that further dexerlopprentis will be necessary before ICAI becomes broadly applicaidlee.

The important contribution of the ongoing COSTOC project is a massive and growing database of high-quality lessomsi, mostly in computer science,, created by experts around the worilld.. Lesson mattemianll consists of text and graphic segments,, combined with a variety of different types of frames ((lnelp," referemce,, questioxr-amswerc, ettce)). For reasons of portability and maintainabiiliittri/, the COSTOC lessms do usually not include programs or other mediia,f although they have the capability to incorporate such. By the end of 1987 , some 250 computer science lessons were availabolle, and this nvumber is expected to grow as high as 500 by 1989. Several labs are cummently running in the US with the COSTOC database incorporated in the curriculum. Typical labs consist of a fileserver (a PC with a lange hard disk ${ }_{n}$ or a Micro-Vax)), containing the database of lesssmss. Student stations are attached directly to the fileserver or via InN or other networkss.

The main differences between COSTOC and HC can be summarized as follacnes:
((a) Radical improvements of the authoring facilituies
(b) Radical improvements of the delivery system
((c) Incorporation of the ability for simulation and progyram inclusion within a lesson

2. HYPER-COSPQC: A GENERAL VIEW

HC is a CAI system which provides a specturim of "hypexmedia typel fracilities and tools to a lesson database with a choice for online and offline use. The philosophy of HC is both hardware and media independent. It is especially geared to a distrithonted, microocmpru-ter-based university enviromment which integrates a variety of university resources in an intelligent way and which if accessibla
in different uncodes to a network of off and on campus users..

2.1. A Typical HC Lab Configuration

A typical HC lab consists of a number of student/user workstations which are connected via a network to a database of instructional materiall. In the browsing mode, the workstation stays permanently online. In the studying mode, a substantial package of instructional material is "downloaded" into the user's workstation and executed locally, i.e." without requiring connection to the database of lessons during this phase.. The extent of browsing mode as compared with studying mode depends on the type of configuration used;:
((a)) The browsing mode should be favored when workstations are connected to a database server via a network with no time charges.. The same holds in the case that the workstations lack sufficient local processing power.
(b) On the other hand," the studying mode should be favored in the following cases;: If intelligent workstations are connected to a database via a network with time charges,, the studying mode should be emphasized in order to minimize connect time charges.. Also," slow networks (below 9600 baud)) tend to favor this mode and material that is "largely sequentiall". Another case for the S-mode is that a database server of a fixed size can clearly handle more workstatioms,, as is the case with the Austria-wide network handling 9,000 users [M33] and the CONNEX lab described in [lcumin].

The HC execution environment is designed to handle both modes.. It is also planned to run on a variety of computers ranging from dedicated micros called MUPID to PC's and workstations like Apollloss.. The most widely used workstation for HC labs will probably be the PC with an ega card.

2.4. HC Database;: A Network of Hypermols

The HC database consists of a large number of usually small teaching units which represent 10 seconds to a few minutes of studying time. We call these units "hyper-molecules"' or "hypermols" for short," since they constitute the building blocks of the HC database. Hypermols have the following properties;: they are the smallest modules that a user can directly access,, they are largely independent of each other", and the user can switch from one hyper mol to another hypermol at any time. We distinguish among three types of basic hypermols:
((a)) Presentation-type hypermols fprl-hypenmols):
They present textual and graphical information which includes dynamic changes of the screen as caused by user=input and also simple animation sequencers..
(b) General hyparmols (fic-mypermolis);

A G-hypermol is a type of teaching unit which can inciude pants of PT-hypermols and also have other functions defined with it. For example, a G-hyperinnol function may define a questionnanswes dialogue between system and user for the purpose of selffassessment or for suggesting on how to contimue, of for examination purposes. Another G-hypermol function may define an algorithm which is specifiable within the framework of Giss [m 2]] used for simulation or experimentation purposess.
((c) External hypermols (fFi-hmypermolls);

To keep HC open-ended, which means to be able to incomporate arbitrary software packages, we pemmit the formation of external hypermols (E-hypermolls). An E-hypermol is an antitrany software package,, possibly external to the HC datablense, which is made available to the user. This software package may be an application program,, a driver for digitized picturres, vices, sound or video etc. This flexibility provides the "hypmmeedida' quality of the HC system.

2.4.1. Composition of Hypermols and Navigation

Although hypermols can be accessed individuallly, they are uswally loosely tied together as a lessom, and groups of lessons compose a comme.. Thus, a lesson is a network of hypermols, with one node defined as the starting one. Paths which visit the connected hypermols within any given lesson are not part of the hypermolls, but kept separate to make a data base of mols highly reusabmee. Such hypermol routing mechanisms are called H=tours.

An H-tour constitutes a directed graph.. Each node in this gragh corresponds to a certain hypermoll. At the end of this hypermoll the student is shown all accessible choices. A choice correspomels to an edge in the directed graph and leads to a new node and the atuacdied hypermol. There are standard types of brancines,r like sequence (next = back) and index (several choices = back)..

All information necessary for navigation is kept in the nodes of \ddagger tounss. They allow to build highly individualized ways through the data=base without duplicating mols. Usually each hypermol will referenced by several H=tours. Figure 2.1 shows part of two H tourass. H=toux number 1 starts at hypermol A and continues in a straight sequence with $B_{1,} G_{1,}$ and $D, H=t o u x$ number 2 also starts hypermol A. At mol $B_{"}$ however", the student can continue with thres different mols: one sequence staxting with $\mathrm{K}_{\mathrm{K}}, \mathrm{E}, \mathrm{r}$ etc., a second one with $C_{"} D_{n} \ldots$ and a thixd one emanating fixom R. To keep the figure simple only forwaid links are shown. As indicated in Figure 2.1

 Iesson): Static $H=t o u r s$ and dynamic $H=t o u r)^{2}$ which depend on the

Figure 2.1

2.4.2. Hypermol Attributes

파우 hypermol has two types of information associated with it:: iodentiffication information (ID) and annotation information ((AN)).. The ID and AN information is explained in terms of examples bellow.

The ID of a hypermol is used to locate the information desired and comsiste of a nimber of attributes with associated vallmes.. For example, a hypermol of a sorting lesson may have the following set Of attributes (twith theix values indicated in parentheses)):: molid (sorit 314)", course (sorting)", lesson" (3)", lesson=name (heapsortt)), molnumbex ((14)," author (maxurer)), supervisor (garfield)), language ((engilish)", domain (computer science)), area (odata_structures, aigozithms), keyworda (heap, heap_definitiom), attribute=type (PT)), etc.

2.4.3. The HC Quezy Mechanism: Some Quexy 耳xamples

The attributes of mols cen be used to seaxch fer certain mols or lessens: The seareh should be carixed out in intexactive fashiom, i.e., the usef identisites what kind of items he/she is looking for (mo1s, lessons, courses,) and defines the key for the search. Some examples show hew this feature can be used.

In the above example of hypermol with molid(sort314), a user can find this hypermol by specifying
hypermols (lkeymord = heap_defimütü̈om))..
The result of such a query will be a list of hypermols since sone; lessons on data structures will also contain the definition of a heap. Moreoverf," by using a wild card character like $\$_{n}$ the user can' abbreviate names of keywords.. Specifying
hypermols (((1esson-name $=$ heapsort $)$) and ((keyword $=$ \$heap\$))))
will give a list of all hypermols of the lesson heapsort where the keyword contains the string heap", such as "heap"'" "definition of a heap'", "'lheap_definitiom" or "lheapiiffy"'. The names of all lessons on sorting could be determined by specifying
lessons (((course $=$ sorting)) and ((lesson-name $=\$)$).
As further example,, consider a user working through a lesson an syntax-analysis and requiring the definition of finite automatton as defined in a lesson by" say", Salomaan. A query
hypermols ((((amthor = Salomaa)) and ((keymord = Finite Automatt\$))))
might well lead to the definition wanted.. Observe,, finally," that
hypermols ((()keyword = Salomaa)) and ((attribute-type = Facsimidee)))
could give a facsimile-picture of Saloman,, or
hypermols ((((keyword = \$automat\$)) and ((attribute-type = PR))))
a list of computer programs dealing with automata (for experi mentatiom) .
 ali the necessary information on keywordsw, attribute-types etc, the query system can be written in such a way that the user ony has to select from menus and to enter text merely in some rase cases..

2.5. The HRC Ammottattion Haciiliity

The annotation facility serves three main purposes;:
(1) it allows to add notes to each hypermol at different operational levels;: as a systems operatorr," as an instructorr," and as a user..
((2)) it allows to specify new private H-tours which override sug gested lesson-embedded tours and is hence called "active anmo-
tation"' [TMNR].
((3) it provides a communication mechanism between the instructor and the author of the instructional materiall.

In addition to annotations associated with individual hypermoilss, there is also a messaging facility of the usual kind.. For example, students may send messages to their instructorr", and the instructor can operate a bulletin board for one of the classew.

2.6. Cross-process Communication

Another important feature of HC which we call cross-process communication is best explained in a multi-window setting and by running through a few examples..

The main point concerning cross-process communication is that in a multi-window environment a nimimer of hypermols can be active on the screen simultaneouslly.. Activation of a new hypermol ((and suspension of the currently active one)) is either carried out by the hypermol itself or by user-intterventtïan. As an arbitrary hypermol x is activated from a PT- or G-hypermol $Y_{\|}$a command-file belonging to this activation is executted: this execution puts hypermol x into a certain state. A return from hypermol x to the initiating hypermol y after the point of activation can either be caused by a command file," by the termination of hypermol x or by a command by the user..

Let us now study two examples.

EXAMPLE 1:

Let us assume we have 3 PT-hypermols $A_{n} B_{n} C_{n}$ and that each of them consists of some textual and graphical information which is split up into three pieces.. For instance," A is of the form $A=A x, P_{n} A A_{n}$ $P_{\text {, As }}$ indicating that first part Ax is shown, after a key press (P)) part Aa is shown," and after a further key press As. Asssume that B and C are built up analogousslly.. Suppose now we want to show to the user $A_{1,} B$ and C in three different windows in four stages as fol-
 the stages are separated by a key press..

In a truly parallel fashion the definition of these sequences is fairly easy: the author selects all three hypermols and executes them, showing the editor where synchronization points should be established. To a student the three hypermols now appear as if additional pauses had been inserted::

EXAMPLE 2:

Different hypermols can also be shown step by otep on the seren under direct user controll. Consider once more the 3 hypermols A, $A_{\text {, }}$, C above and smppose the user wants to see simultaneousiy fizst Ai, $\mathrm{Ba}, \mathrm{C}_{2}$ and then A 3 " B 3 " C 3 . The user activates A in One window giving Ax/r then activates B in another window and presses a key
 Cx are visible. By reactivating A and B and pressing a key twies for each mol,, the second desired configuration is obtaimedh.

2.7. Checking of Inputs - Filters

Furthermore, observe that certain moduls such as checking the walidity of inputs keep re-occuring in many simulation - or experrimentation programes.. To reduce the work of designing such programs the authoring system should support the generation of G-hernmols checking the input. These G-hypermols can then be used by other G hypermols," passing the necessary parameters as command file..

In passing we also want to point out that the mechanism necesssany to define a valid set of answers, and the algorithms for checdsing whether a given answer is in the set ((as they are used in the an-swer-judging routines of the execution envirommemtt)) are also usseffill for the construction of filters.. Thus,, many of the algorithmas for determining spelling errors,, redundant wordiss,, using synonymss etc. have applicability far beyond answer-judgiimgy: filters are just ane example," general user inputs are others:: when a user types

Iessom-name ((course = Data-structmres),
and the system comes back with no lessons since the course happposs to be named Datastructures ((without hyphem)) then the system is clearly not sufficiently user-friemolly
3. HYPER=COSTOC FROM A STUDENT'S POINT OF VIEW

3.1. Generally Available Execution Features

A HC session usually starts by identifying oneself and selecting lesson from the HC data=base via menu pages and/or a simple database query mechanism. The identification is necessary for semenen reasoms: to save the status for later execution whem temporaminl leaving the system," for exams," to manage private annottattionss, etce.

In studying mode as many mols as possible are loaded into the memory of the workstatiom. To determine the hypermols needed the information kept in the H=tour emanating from the title hypermon is used. Lessons come with routing suggestions leading from hypemmoll to hypermol," as stated in the H=tour by the original authrom. Whenever desired, execution can be continued with arbittrary hypermanss, (fortontialiy in new windows and allowing to just temporarily suspend the execution of the curxent hypermoll), hypermels pessibly including guestion/exam modules, simulation= and experimeatation
programs,, the use of other mediia," or execution of some other pro-gram-parcikarge..

In addition to the navigational features discussed so far, further features available including marking a hypermoll, returning to a marked hypermoll,, backstepping ((mepeatedly if desiredi)) through the dynamically last hypermolls,, continuing with the hypermol containing the ((dyymanically last)) ((sub)table of contents and switching on/off a fast display mode in which a hypermol is displayed in accelerated fasshioun..

Above features are fairly easy to implement in most environmemts.. However, there is one navigational feature of paramount importance which is not easy to handle fully and hence is often not supported. It is the undo feature,, undoing the effect of the last key press in PT-hypermols and when following H-tourss the difficulty in implementing repeated undos in an environment of dynamically changing graphic information is that the only trivial implementation keeping a stack of memory maps and systems" status = is usually too memory intensive to be usefull. More tricky implementations are possible and discussed in [[NAR]..

In addition to be able to collect a mixture of parts of hypermols and own notes just for printimg, the information can also be retained in an electronic version as notebook. Indeed usually all information is first put in a notebook (which can later be inspected and edited))", and the printing is just one of the options of handling the notebook..

3.2. Annotations

Finally, let us consider the concept of annotatioms, an extremely important concept of the execution enviranmempt.

When the user starts a session and accesses a first hypermoln, a list of public annotations is shown. Any of these public annotations and further private annotations (for which the user must know the appropriate password, e.g. because these annotations were created by the same user in an earlier sessiom) can be enabled (and later disabled,, if desired)). To enable an annotation means that whenever a hypermol is activated, all enabled annotations are shown in parallel with the hypermol in a separate window. If the hypermol causes dynamic changes on the screen step by step, the annotations can also be split up into steps and synchronized with the hypermel in a way described in more detail in [[AN Nin].

Annotations mainly consist of text. They can also create special pointers outside the text window (i.e. in one of the graphic windows)) for highlightimgy. Thus," an annotation may read "Observe how the valve * opens and closes"', with the * appearing both in the text and next to the graphic object being explaimed. How this is done, and how conflicts between various annotations are avoided is explained in [[10ns].

Public annotations are usually written by an expert commenting or elaborating the work of the original author," or by a teacher as individualized information for a particular class ($(1 . . .$. a further good book might be ...", "'... this proof won't be on the exams a workbook..

Annotations are a way to allow a certain individualization and customization of instructional materiall. This possibility is much enhanced by one further aspect of annotations which we have not particularly considered yet. It is this aspect which causes annotations in HC to be called active annotatioms, to differentiate them from the static annotations found in many document systemss..

Annotations may contain routing suggestions of the kind "To con tinue press $1^{\prime \prime}$ where the solicited action leads to any hypermmil selected by the annotator" in particular to hypermols created by other authors.. In connection with an automatic annotation activation and return facility", hypermols can be linked together in en tirely new ways both by the teacher and the user..

A final word is appropriate concerning private annotatiomss; assure privacy and to conserve storage in the data-basse,, primate annotations are usually kept on the student's directory or even floppies and not in the data-base of lessons itself. The user", returning to material studied before, is then shown his pensomal annotations either from the private directory or from the floperyr.

4. HYPER-COSTOC FROM AN AUTHOR'S POINT OF VIEW

It is of crucial importance for any CAI undertaking how easy it to create and maintain lesson materiall. We have discussed at lenghn)) ((in [[MM2])) that this is one of the main reasons supporting procail and ${ }_{n}$ more general, CAI data-bases containing small pieces of in-f structional material (be it PT-CAI," experimentation or simulation! software)) which are as independent of each other as possible and hence can hopefully be designed and tested more or less as indeppendent moduless.

The hypermol concept supports this philosopphyf. PT-hypermols are usually small and quite "context independemt"' modulesi; the same holds true for G-hypermols except that certain G=hypermols may al ready become substantial in size and hence are harder to cneste, ! debug and maintaim.. The E-hypermols," on the other hand, are sup posed to be developed outside the HC framework.. Their design can k el made easier," to some extent," by shifting some of the effort tol standard G-hypermols whose generation is supported by HC authpuing! as will be discussed below. IT is, for example," possible to standard input-hypermols to remove the task of designing interfades for requesting ((and validity checking of)) student inputs from E hypermolis..

4.1. HC Editors

Bastically, HC authoring provides a presentation facility editor (fifir creating PT-hypermols or presentation segments of G-hyresimoliss), a question-answer dialogue editorr. a routing editor, a stimdard hypermol editor and a program editor ((allowing to create and test program segments written in a subset of Pascal as speaifried in GLSS [[DS2]). As important feature, the program editor allows to use presentation-type constructs as developed by the presemtation facility editor. Detailed descriptions of the variouss editors can be found in [[BAMM]]. We just describe here the importamt espects of the different editorss.

The HC authoring system which we propose should be extensible and cmssthomiizablle. Let us consider some examples to get a rough idea of what this means. The crucial aspect of extensibility is that new objects can be introduced ((imeluding the specification of all interfaces required by the author," such as menus for input promptrs and calculation or other procedures where requiredil).. Once introduced" such new objects behave exactly like standard objectss:: After an object "'perppemdicular bisector'"," for examplle," has been introduced and is then used by the author", a prompt for the input of the endpoints of a line segment appearrs. After the endpoimts have been deffimed by the author", the line segment and its perpendicular bisector are drawn automatically. A more complex extension would be to introduce "'aud-gates" and "'or=gates" with inputs and outpuits as new objects in such a fashion that," when drawing such gates and their connection lines," the system always automatically shows the author how many inputs and outputs still have to be dealt witth.

Cosstomizing and extending the editor also involves actions such as remauning or deleting objects (to simplify menus or to make them more appropriate for the task at hand; typicalllys, the term "vectorr" is more appropriate than "arrow' in mathematicall contextss, but not in othemss) or pressetting certain parameters such as color combimations ${ }_{\|}$defining the layout of a table=of=contents=hypermoll to be used as kind of template," etc. Consult [HM1], [HM2]," and [H] for further details and possibilities.

Qumbiom=answer dialogues come in a number of varietiess, namely multiple choice," free-toxtr, form=fillimon, drillr exercise and exam.

In case of the drill a view option (which can be enabled by the author) can be used to first look at all questions and the correspomding answers before the actual drisly staxtor. Tssentialiy drinh forces the learnex to answex all questions repeatedhy, untily they can be sure, that they know all the answers. There existe difererent strategies for choosing questions from the set of all peffitholle questions, from simple picking at random to more sophisticated methods, like in [[$\left.\mathrm{HS} \mathrm{HS}_{4}\right]$].
only once in a random order with feedback showing the cormect solution if the user has not found it after a number of tries. At the end," the percentage of questions answered is shown to the userf for self-assessmentt.

The exam mode is similar to the exercise mode except that a time limit specified by the author is given, and correct answers are only shown after the exam is finished. Alson, there is an identifi cation procedure at the beginning," and results are recorded in a file only accessible to the instructor ((graphical presentation of points obtained, cut=off points for grades,, printed listing of students and gradess).

The routing-editor shows the author a graphic presentation of the network the mols of a lesson form. It allows to link hypemments suggesting to users which out of a selection of hypermols to view next. Some of the routes suggested ((or even enforced)) depend on the outcome of question-answer dialogues..

Message,, notebook and calculation facilities are available to both authors and students.. The facility to collect information froin hypermols," to edit it, to add personal notes and finally print it n_{n} is particularly valuable for authors as a means of easily produccing a printed course=documentattiom. HC authoring also supports the ex-1 traction and replacement of text-pieces from hypermols for transla tion purposes,, full=text searches and string replacements accuss the range of lessons and other text-related functioms..
5. HYPER=COSTOC FROM AN INSTRUCTOR'S POINT OF VIEW

As first step an instructor has to select material of interest for the specific situation in the HC data-base. This is usually done on the basis of the printed documentation of the courses..

Once a course looks promisimg/, the instructor checks through it to determine which parts to use. Often " an instructor decides to use a few lessons for replacing some class-room teaching and some fuxthert just for "recommended reading'". Usually the instructor will go through the material once, making annotations for the studknts (("... learn up to here for the midterm"" "also look at the book lessons more widely usable..

Finally instructors want to know how often hypeinuiols have been accessed.. For this purpose,, HC presents comprehensive stattistticam information on the use of the data-base.. As a matter of fact," in addition to the "statistical" package ((just presenting tables of what has been used whem)) a sophisticated "monitoring" package should also be available to record all keypresses of students (in an anonymous way).. Such data," together with special utilitties,, will provide good insight into how the data-base is used, which parts of questions cause problems," etc.
6. SUMMARY

HC is a major undertaking whose aim is to provide the design and part of the tools to set up a comprehensive CAI lab to support teaching activities at various levels.. In additiom," a large database of instructional material is available in some key areas (e.g. computer science)) in good quality from the outseth.

Acknowiledquememt::

Support of part of this research by the Austrian Federal Ministry of Science and Research ((Grant Z1. 604.508/2-26/86)) and the Fonds zur Förderung der wissenschaftlichen Forschung ((Grant P6042P)) is gratefully acknowledged..

REFERENCES

[[BC] Bonar," J. and R. Cunningham," "Bridge;: An Intelligent Tutor for Thinking about Programming"',, Learning Research and Development Center Technical Report,/ 1986.
[BCS] Bonar", J.", Cunninghanan, R./" and J. Schultzz" "'An Object= oriented Architecture for Intelligent Tutoring Systems'"," OOPSSITA" 86 Proceedimgs," SIGPLAN Notices,, Vol. 21" No.. 11" pp. 269-276.
[[BB] Burtom," R." and Brown," J." "'An Investigation of Computer Coaching for Informal Learning Activity"', Appears in Intelligent Tutoring Systems," ed. by Sleemam,, Brown," Academic Press..
[C1] Carbonelll", J." "AI in CAI: An Artificial-Intelligence Approach to Computer-Assisted Instructiom"', IEEE Transactioms on Man-Machine Systems," Vol. MMS-111,, No. 4 $_{\boldsymbol{n}}$ Dec.. 1970.
[[CLM] Cheng," H. Lipp," P. and Maurer!, H.", "'GASC; A low-cost," no= nonsense Graphic and Software Communication System"," Electrr. Pub. Review 5" 1985" pp. 141-155..
[[C3] Conklim,, J.", "Hypertext;; an Introduction and Survey"'," IEEE Computerr,, Sept.. 87, pp. 17-411.
 Concept for Hypertextt"," Comf.. on Computer Supported Cooperative Work Proc.." Austim,, Tx.." Dec. 1986" pp. 147=152..
 thors"'" IIG Report 244", Graz Univ. of Technologys', Austriia, 1987.
［［GSM］Garrett，＂L．N．，Smith，＂K，R．，and Meyirowittr，N：，＂＂Entezme－ dia：Issues，Strategíes and Tactics in the Design of a H^{K}－ permedia Document System＂，Conference on Computercshippowted Cooperative Work Proceedings，Austim，Tw，Dec．1986，Fp． 163－174．
［［G2］Goodman，＂D．＂＂The Two Faces of Hypercard＂，＂Maeworild，Cot． 1987．pp．122－129．
［［सMM］］Halasz＂F．n Moran，，T．and Trigg，r R．＂，＂Notecards in a Nut－ shell＂＂CHI and GI Conf．．Proc．：Human Factors in Computining Systems and Graphics Interfaces，，1987，＂pp．45－522．
［［⿴囗十 ］Huber ${ }^{\prime \prime}$ F．n＂On Customizing a PT－CAI Editor＇＂，IIG Report 249， Graz Univ．of Technologyy，Austriia， 1988.
［［\＃MI］］Huber ${ }_{n}$ F．and Maurer，＂H．＂＂On Editors for Presentation Triel CAI＂${ }^{\prime \prime}$ Applied Informaticss，＂No．11＂1987，＂pp．449－457．．
［［\＃M12］Huber ${ }^{\prime \prime}$ F．and Maurer＂，H．＂＂Extended Ideas on Editors for Presentation Type CAI＂＂，IIG Report 240，Graz Uniw．of Tech－ nology＂Austria，＂ 1987.
 Comprehensive Computer－Based Teaching Support Systenl＂，tol appear in：Journal of Microcomputer Applicattiomss．．
［WM1］Makedón＂，F．＂Maurer＂，H．，＂CLEAR：Computer Learning Ressurcat Center＂＂，UTD CS Technical Report，＂ 1986.
［WMO］Makedóm，＂F．Maurer，＂H．Ottmanm，＂TT．．＂，＂A Methodology for Prei sentation Type CAI in Computer Science Education at Umüver． sity Level＂，UTD CS＝Report（（1987））to appear in Jourmall of Microcomputer Applicatioms．
 tation in CAI Systems＂＇，in preparation．
［［MSI］Marchionimi＂，G．＂and Sheidermam，B．＂＂Finding Facts vs． Browsing Knowledge in Hypertext Systems＇＂，Computtom，Jam．，\＆8，｜ 1988 ${ }^{\prime}$ pp．70－80．
［［M3］Maurer，＂H．，＂MatiSearch Intermediaries＇＂，J．Am．Society Imformation Science，＂Vol．34＂，1983＂，pp．，381＝404．．
［［M3］Maurer ${ }^{\prime \prime}$ H．＂＂Mation－wide Teaching Through a Network of Grocomputers＇＂，IFIP＝World Congressi，Dublinn，North Hojlatai Publ，Co．＂1986＂pp，429＝432．
［MM2］Maurer＂，H．，Makedóm，F．＂＂Costoc：Computer Suppoxto Teaching of Computer Science＂＇，UTD＝CS Technical report 1986.
［［MR］Maurer，＂H．，Reinsperger，I．＂，＂Comple\％耳⿻eeution Features of

CAI Systems and Their Execution With Limited Resources'"," IIG Reportt," Graz Univ. of Technology/" in preparattiom..
[LNS2] Maurerf, H. and Stubenraucin," R." "GLSS: A General Lesson Specification System"'" IIG Report 241-87", Graz Univ.. of Technologyy.:
[MS3] Maurem; $H_{\text {. }}$ and Stubenrauchn," R., "Filters for CAI"" IIG Report," Graz Univ.. of Technology/, in preparatiom..
[MS4] Merrilll/ P. F." and Salisbury", D." "Research on Drill and Practice Strategies'"," Journal of Computer-Based Instructiom, Voll. 11_{n} No. 1_{n} Winter 1984॥ S. 19-211..
[[194] Morriss/, J. H." et al" "'Andrew; A Distributed Personal Computing Environmemt'" ${ }^{\prime \prime}$ Comm. ACM,, Mar.. 1986., pp.. 184-2@11..
[[R1] Rickell/, H. W., "An Intelligent Tutoring Framework for Task= Oriented Domains"', MS Thesis,/, UTD/, 1987.
[[TSH]] Trigg/n R., Suchmam", L., Halasz", F." "Smpporting Collaboration in NoteCards" " Conference on Computer-Supported Cooperative Work Proceedimgss," Austim," TX." December 1986", pp. 153= 162.
[WI] Ward," L. and Irby", T.C." "Classroom Presentation of Dynamic Events Using Hypertext'", Twelfth SIGCSE Technical Symp.. on Computer Science Educatiom, ACM. SIGCSE Bull (USA) St.. Louis," MO, 26-27 Feb," 1981..
[IYLC] Yankelovichn" N." Landow," G. P." and CodY/r D." "Creating Hypermedia Materials for English Literature Students'"/, IRIS," Brown Univ../, Techm.. Report/, Providemce," RI/, Oct. 1986.

SCDAS - Decision Support System for Group Deeision Making: Information Processing Issues

Andrzej Lewandowski
International Institute for Applied Systems Analysis
Laxenburg, Austria

Abstract

Most of researeh in the field of computerized Group Deeision Support Systems is devoted to analysis and support the quantitative phase of decision processes using various methods of multiple-eriteria analysis. The experience shows, that the soft side of the decision process needs also certain support. This relates mostly to distribution of textmal informatiom which augments the quantitative side of decision process and to providing the linkage between sueh information and numerical data. This aspeet is espeeially important when the decision support system is implemented in distributed computing enviromment. In the paper the possible forms of information processed within the SCDAS system are analysed as well as the framework for implementation the software providing such processing functions is presented ${ }^{n}$.

1 Introduction

The SCDAS system (Selection Committee Decision Analysis and Support) has been designed for supporting such decision problems, where the group of experts (the committcee) cooperates to select the best alternativive (or to reduce the set of alternatives to some reasonable subset which can be considered for further analysis) among alternatives presented to them by independently acting experts. Detailed assumptions and description of the SCDAS procedure are presented in the paper by Lewandowski and Wierzbieki (1987).

Up to now exist several experimental implementations of the SCDAS procedure (see Lewandowski, 1988). All these implementations have been prepared mostly to investigate the algorithmic and procedural aspects of SCDAS framework as well as to perform experimental applications of this methodology (for such an experimental application see Dobrowolski at all., 1987).

During experiments with existing prototype implementation of SCDAS as well as experiments with participation of decision makers it became clear, that support of quantitative aspects of decision process must be augmented by tools for supporting qualitative phase of this process. The idea that the discussion between committee members is one of the most important part of the decision process has been already mentioned in quoted above papers. It was stated by Destanctis and Gallupe (1987):
"...A group decision occurs as the result of interpersonal communication - the exchange of information among members.... The communication activities exhibited in a decision-related meeting include proposal exploitation, opinion exploitation, analysis,

[^2]expression of preference, argumbentation, socializing, information seeking, information giving, proposal development and proposal negotiattioms...In this sense the goal of GDSS (Group Decision Support System) is to alter the communication process within grouppr...."

Huber (1984) also expresses the importance of qualitative support for decision making:
> *...Infformathion sharing is the most typical of the activities in which groups engage.... general GDSS can also enable groups to elicit, share, modify and use professional bitudgements and opinions in at least as many ways as they do hard dato...."

Without the consensus related to procedural principles and other important aspects of decision process it is not possible to provide any quantitatbive support. This consensus can be however feached only after discussion and exchange of information between committee members.

Therefore, the group decision support system should be treated as information processing and information management system.

2 Documents structuring in SCDAS system

Most existing GDSS is oriented toward processing numeric information (see Jarke, 1987, Bui and Jarike, 1986, Bui, 1987). The user of GDSS can enter numerical information to the system, retrieve this information, share with other users and perform rather complicated numerical procedures to extract important conelusions from this data. However, other types of information are also important for supporting decision processes. It has been pointed out by Huber (1984) that:

> "...Today's DSS are largely concerned with the retrieval and use of numeric information. In contrast, the envitronnent of most meetings in corporation and public agencies is highly verbal. Thoughts are primarily shared and modified, not numbers. To the extent that the thoughts need to be recorded, they are put into text fform.... Meetings are extremely verbal environments, and the most important thoughts with which they deal are put into text form. A GDSS that does not reflect these facts will serve only affaction of group task. For this reason it is important to consider how GDSS can support decision groups by aiding in the sharing of textual informatiom...."

As it has been pointed out in previous publications (Lewandowski, 1987), the most promising framework for implementation the group decision support system is the distributed computer environment equipped in teleconferencing and office automation software. Such an environment allows smooth tramsition from the existing practice of office and telecommunication systems utilization to new forms; moreover such an environment requires only small modifications or extensions to the existing software and methodrollogies to support new functions.

The basic idea of implementing the SCDAS in teleconferencing framework is the extension of the concept of documzent. In the standard office automation and teleconferencing systems the text $=$ letters, memoranda ete. constitute the basic information carrier. In the extended or decision teleconferencing system the concept of docwment has been generalized - besides of textual data, numbers are transmitted between the members of the group. Moreover, the formadizzed $k n o w i l e d g e$ necessary to interpret the data and to structure properly the decision process must be implemented within the system and made available in sufficiently simple and friendly form to the users of the system. Therefore, several types of documents can exist simultaneously in the extended teleconference system - documents which can be different nature and strongly interdependent. These dependencies can reflect logical relationships between numeric and textual
data as well as can reflect the users opinion and knowledge related to the information being processed.

In order to design such extended teleconferencing system it is necessary to specify the possible types of documents generated and processed both by users and the system and rules for generating and processing of such documents.

Seweral types of documents can be distributed during a typical meeting. According to the agenda of SODAS decision conference, some steps of the decision process can be more oriented towards quantitative reasoning based on analysis of numerical or quantitative data, whereas the other require strong exchange of verbal information, a lot of discussion and more qualitatiive oriented analysis. The insight into the consecutive steps of the SCDAS process leads to the following conclusions;

The fifst stage. In the existing experimental implememtations of the SCDAS system (Lewandowski, 1987) it was assumed, that the SCDAS conference begins with Phase 0 , when all elements of the decision problem (i.e. alternatives, attributes, committee members and a procedure) are known; therefore during the Phase 0 all these informations can be entered into computer. In the fact, reaching such a high level of common understanding and consensus within a committee could require a lot of discussions and information exchange. Neither the list of alternatiinves, nor their descriptions need be complete at this stage; moreover, this information might be not known to the committee members at this stage, if they wish to avoid the bias in specifying atuributes and their aspiration levels. The important issue at this stage that requires discussion and specification by the entire committee is the definition of the attributbes of the decision and their seales of assessment.

The questions formulated during this stage of the discussion could include the following:

1. What is the expected product of the committee work and how does it influence the selection of the details of the procedure?
2. What rules for aggregating opinions across the committee should be adopted, in particular, should outlying opinions be included in or excluded from aggregation?
3. Should the committee be allowed to divide and form coalitions that might present separate assessments of aspirations, attribibute scores and thus final rankings of alternatiines?

The second stage of the the decision process is devoted to aspirations. During this phase aspiration and/or reservation levels for all atuributtes are determined separately by each committee member. After these values are entered into the decision support system, all necessary indicators (disagreement indicators, dominant weighting factors - see further comments) can be computed. During this phase there will be no active information exchange between committee members - everybody should analyse the problem and specify aspirations himself.

The third stage has again two objectives. One is the analysis and discussion of aspirations by the entire committee. These discussions are supported by the computed indicators and their graphic interpretations. In these discussions, the committee might address the following questions:

1. Do the computed indicators accurately reflect the perceptions of individual committee members about the relative importamee of various atturiboutes (if not, should the aspirations or reservations be corrected)?
2. What are the relevant differences of opinions between committee members and do they represent an essential disagreement about decision prineiples?
3. Does the entire committee agree to use joint, aggregated aspirations (reservations), or will there be several separate sub-group aggregations?

The second objective of the third stage is a survey of alternatikes. Discussions might centre on the following issues:

1. Are the available descriptions of alternathives adequate for jurdging them according to the accepted list of aturiibuitters? If the answer is negative, additional information should be gathered by sending out questionnaires, consulting experts etc.
2. Which of the available alternativives are irrelevant and should be deleted from the list? Such preliminary screening can be done in various ways. The committee might define some screening atuributbes and reservation levels for them (of a quantitatioive or simple logical structure): for example, we do not accept investments which are more expensive than a given limit.

The frourth stage of the decision process is the individual assessment of alternatiines. The evaluation of each attrifbute for each alternative is the main input of committee members into the system. Each member specifies evaluation seores; the decision support system helps him by displaying the evaluations already made and those still to be entered.

When all evaluations are entered, a committee member should proceed to the individual analysis of alternatives, that leads to a ranking of all alternathines for the given committee member. This ranking is the main souree of learning about the distribution of alternatikives relative to aspirations.

The questions addressed by each member at this point might be as follows:

1. Do the rankings along each atturibute correetly represent the individual's evaluations of alternatitives; does the achievement ranking, based on individual aspirations, correctly represent the aggregate evaluation?
2. If the committee member agrees with the individual achievement ranking proposed by the system, what are the differences between this ranking and that based on individual scores but related to committee aggregated aspirations? Are these differences significant, or can he accept them as the result of agreement on joint decision principles?

The fiffith stage of the decision process relates to an aggregation of evaluations and rankings across the committee and consists of a diseussion of essential differences in evaluations, followed by a discussion of disagreements about a preliminary rankìng of alternatiiwes aggregated across the committee. These discussions are supported by the system; the system computes indicators of differences of opinion and prepares a preliminary aggregated ranking.

The questions addressed by the committee at this point might be the following:

1. On which aturibbutes and alternatives the largest differences in evaluations between committe members are observed? Do these disagreements represent essential differences in information about the same alternative?
2. What is the essential information (or uncertainty about such information) that causes such disagreements? Should additional information be gathered, or can certain committee members supply this information?
3. Would the results of these discussions and possible changes of evaluations influence the preliminary aggregated ranking list proposed by the system? This can be tested by applying simple sensitivity analysis tools.
4. Does the preliminary ranking proposed by the system correctly represent prevalent eommittee preferences?

After these discussions, a return to any previous stage of the process is possible. If the committee decides that the decision problem has been sufficiently clarified, it can proceed conclude the fiffth stage by the final agreement on the aggregated ranking or selection of one or more alternatives. It is important to stress again that the committee needs not stick to the ranking proposed by the system, since the purpose of this ranking - as well as of all information presented by the decision support system - is to clarify the decision situation rather than to prescribe the aetion that should be talken by the committee.

Let us analyse the possible types of information which can be processed within the SCDAS system. This information can be categorized according to two attmilbuuthes: information access and ownership as well as structural properties of information.

The access to the information generated during the SCDAS session depends on two factors;

- the privileges of the individuals participating in the SCDAS conference. The rules are simple - the conference owner (or committee presiidentt) is the only person authorized to change the definition of the problem - like adding new committee members or removing them, changing the list of atuributes or list of alternatives etc. He also can generate the textual informations relating to the problem definition or to the progress of the conference, which have read-only status for other committee members. Moreover, he can decide whether at a given stage of the process this information can be visible to other conference participants or will be hidden.
- the stage of the process. Since the SCDAS conference heis some temporal dimension - the decision process advances from the given stage to the next one if all committee members specified all information necessary on the given stage, the access rules can change in time.

With respect to structural properties, the information generated during the SCDAS conference can belong to two classes:

- the highly structured numerical and quallitative data. All the information constituting the problem definition, the relating information generated by the participants (aspirations, scores) as well as information generated by computer (values of achievement function, rankings, graph plots, etc.). There exist strong and well defined relationships between these data - we will call these relationships structural links in this sense that it is well defined what data are required from the conference participants at a given stage, what properties these data should possess, what actions (and calculations) are necessary to perform when data are entered to the system or ehanged by the user and what data must be used to calculate other numerical information.
- the unstructured textual information - like notes, memoranda, mail notes send to other conference participants. This information is similar to these generated and distributed during the standard conference. The only diffference is in the structuring principle - usually, some part of this set of information ean strongly relate to the numerical data. Therefore, the numerical data can be treated as the equivalent of topic in the standard conference - for every numerical item there can exist the linear list of comments generated by conference participants. Therefore the hard links between textual documents can exist - two linear links of comments will be internelated if there exist some links between numerical data which this textual information is associated. We will eall these links hard since they are a'prior determined by the organization of SCDAS procedure.

Summarizing, the information generated during the SCDAS conference can be structured by the structure of the decision process itself. It is possible, however, that the second layer of links between numerical data and textual information ean exist = namely links introduced by the user

In order to reflect his particular, personal view on various aspects of the problem being solved. This kind of relation between documents we will call soft links.

The soft links can be arramged in similar way like it is done in hypertext system. In this way we have two, parallel layers of links - the soft layer and the hard layer. Therefore, contrary to the standard hypertext (see Conklin, 1987, Yankelovich at all., 1988) we will have the primary relewant docwments and the secondary relevant documents - depending on the fact whether relevant documents are belonging to the same layer where the root of the search tree is located.

The difference between hard and soft links are not only formal - their existence can support different questions relating to the problem being analysed. If the question addresses the problem "...how to explain the flact that my flavourite alternative is ranked by the committee so low...." in order to answer it is necessary to know what data directly influence this fact. This ean be difficult issue for the user, especially if he does not know exactly the theory backgrounding the system. Since this theory is known to the system developer, he can establish the links which can help to trace data which are relevant to the posed questions. It is clear, that the answer on such question depends on the state of the system - understood as the values of data present in the system on the given stage of decision process. Therefore, some of these links can be dynamic, i.e. they can be changed during the progress of the decision process. Therefore, the mechanism for creating an updating such links must be built into the system. In order to fully support this function of the system, hard links must be provided for help documents. These documents play the role of standard context dependent help, but similarly like dynamic links these documents can also be dynamic = the help given to the user must depend not only the current state of the program (i.e. to address the question where am I now) but also address the current state of the system (what flollows fifrom this). These two functions of the system we will call the guidance help and the explanatory help.

The soft links play role of the remainder - the user can link and browse documents which he, or other participants consider as important on a given stage of the process. Evidently, these documents can contain both the numeric and textual data

Summarizing, we can view the SCDAS decision conference as the document exchange problem with documents being procedurally structured and contextually structitwhed.

3 Sistoutctureed ddecimmeentsininSSODAGSssystem

Let us discuss in details the structured documents which can be generated during the SCDAS session and possible relationships between them. The structured documents can be generally categorized into numerical and textual ones. As it was mentioned in previous sections the structured documents can be generated by the conference participant or computed by the system. The questions formulated now can be as follows:

- what types of structured data is required from the user on a given stage of the decision process and what the operational rules for handling these data,
- how these data can be used by the system on a given stage of the process,
- what are the possible dependencies between data entered by the user and/or generated by the system on various stages of the procedure.
- what actions are undertaken when a given action related to data is performed by the user.

The structured information required from the user (users) depends on two factors:

- the current pheise of the SCADS process,
- the privileges of the user entering and manipulating data.

The procedural framework presented in paper by Lewandowski and Wierzbicki (1987) specifies all the data created during performing the decision-oriented part of the conference. The data can be split into three following groups;

- Data characterizing the problem being solved. These data are generated by the conference owner and contain all the information necessary to initiate the conference. They include;

1. List of alternatives, together with all documents characterizing these alternatives and necessary to make evaluation,
2. List of committee members, together with voting power, specifying number of votes assigned to each committee member,
3. List of attributes together with numerical or verbal scale necessary to express the value of atuributbes together with all relevant documents concerning the given aturibumbe.

- Data created by the user during interaction with the problem. These data include;

1. Values of aspiration and reservation levels specifiled for each atturibute,
2. Values of scores for all alternatives reflecting the subjective value of alternative with respect to all atumiboultes,

- Data generated by the system during iteration process. They inelude;

1. Average aspirations and reservation levels for all aturibumes,
2. Values of achievement fifuctions computed for seores specified by all committee members and for individual as well as committee aspirations. These functions are used by the system for ranking alternattives. See paper by Lewandowski and Wierzbicki (1987) for formulas and procedural details,
3. Ranking data which reflect the ordering of alternatives aceording to the information specified by conference participant individual aspiration and individual scores as well as information relevant to the committee opinion aggregated aspiration,
4. Status indicator generated by the system as the response for user's actions. Every user has his local status indicator, the system computes the global status indicator. These indicators reflect the phase of decision process and are equal to the number of phase being currently processed. The system compares individual status indicator with the global one and on the basis of this information determines what data are accessible for the user and what actions he can undertake. When the user terminates the current phase, his local indicator is incremented; the global indicator is incremented only if all users successfully completed the current phase. The global status indicator can be manipulated by the conference owner - he ean, for instance decrement this indieator to make the recourse in decision process.

The rules specifying access to data created and analyzed during the decision conference are as follows;

- The conference owner has access to all data created during the conference with the following access rights;

1. He is the only person authorized to change the problem definition, i.e. list of committee members, attributes and alternathives (read = write access),
2. He has aceess to all data generated by the users, i.e. aspiration and reservation levels, scores assigned to alternatives and user's status indicators or computed by the system using user's data, like average aspírations or user's achievement functioms'(uead-only access),
3. He can change the status indicator; this action will allow changes of user's statuus indicators (read-write access),

- The conference participant has access to the following data:

1. All data defining the problem, i.e. list of committee members, attriibuties and alternatives (read-only access),
2. Data computed by the system, like average aspirations and global achievement functions (read-only access),
3. His own data like aspirations or seores zissigned to alternatimes (read-write access, or read-only access depending on the current value of statums indicatory,
4. All the data located in his own notebook (read-write access)
5. Data created by other user can be accessible by other users only with permission of the conference owner (read-only access).

Except of definition of data structures, we should investigate the temporal dependencies between data generated on various stages of decision making process as well as rules for sharing data between users during each stage of decision process. Therefore the following aspects should be investigated:

- What data are generated at every stage of the decision making process,
- How the data access rights are changed during this process,

The rules for data access are relatively simple: on a given stage of SCDAS process the conference participant has free access to data generated by himself and by the system during previous stages. This access is however restricted and such data can be only insppected. On a given stage of the process the system requests from the user some data; he can freely modify and read this data until he decides to terminate the current phase. It happens, when the conference participant decides that entered data reflect well his point of view about the problem and can be used for further eomputations. Sinee this moment the data is locked and available only for reading and inspection. Termination of the session changes the local status indicator (see above) which is used by the system for synehronization control. The committee president can change the status indicator what results in unlocking the data generated during previous stages. In this way the recourse in decision process can be performed.

Let us concentrate on details of operations performed during every step of decision making process:

- Phase 0. During this phase the conference president can initiate the new conference of update the old one. The standard sequence of actions undertaken during this step consists of the following:

1. Specification of user's name and verification of access mode (the ordinary conference participant or the conference president)
2. Venification of the user's name. If such a name is not known to the system, new conference should be initiated.

Exit from this stage of the program is possible in two modes - the quit mode and terminate mode. In quit mode the program terminates, but the data are not trammsferred to the global data base. Therefore, the user can invoke the program again and perform necessary data modification. It terminate mode, all data are trimusferred to the data base. In this case the local status indicator is also updated as well as the global status indicicator..

- Phase 1. In this phaise all users should define aspiration levels for all aturitbultes. The preamble of this phase is similar to the previous one;

1. specification and verification of user name. The request is rejected if the specified name is not known to the system (i.e. he is authonized to participate in any conference already defined). The request is also rejected if the user terminated the current phase and wants to modify some data = according to the procedure it is not possible without acceptance of the conference president.
2. creating (or updatimg) the data base with the list of atuributtes and numerical data associated with aturilbuitues. Similarly like in previous plifise, the program can be terminated in two modes - the terminate mode quits the program only; the data are not tramsferred to the data base and status indicator is not updated. Therefore the user can resume this phase as many times as he requires until he decides that he specified all required data. In such a case he should exit with a quit mode, what initiates updatiang the global data base with new aspiration data. The system checks the status indicators of all users = if all of them completed the current phase, the global status indicator is incremented. In such a case the users can begin performing the next phase of the process.

- Phase 2. In this phase the user can perform the analysis of data specifiled during the previous phase. After verifying the user's name and the status indicator, the user can perform all necessary data analysis. Similarly like in the previous phase, it is possible to exit the workstation program in terminate or quit mode. The standard procedure for incrementing the status indicator is performed.
- Phase S. In this phase the user must specify scores for all aturitbouthes. This is definitely the most complicated and time consuming phase of the decision process which may request rather intensive interaction with other data information systems and services available to the user as well as rather deep analysis of the specified data. After terminatiing this phase the seore table is tramsferred to the global data base and the standard procedure for incrementing the statius indicators is performed.
- Phase 4. In this phase the final analysis of the data is performed. When all users completed the previous phase, the achievement foumetions for seores specified by all committee members are computed. Values of these functions are used for ramking alternatbives. Since this is the last phase of the process, status indicators are not updated.

4 Unstinuadtureed dbocurmeents in SHCDAAS ssjattem

As it was mentioned in previous sections, except of highly structured information related to alternatives, atuributies, seores ete., the SCDAS system supports generation, exchange and analysis of several types of unstructurred information. This function of the system supports the soft side of the decision process - in many cases more important for obtaining final result and usually requiring more effort to complete than just collection of scores and computing of rankinge.

The basic element of this side of the process is the document. We will understand this term in narrow sense - the document will be non-actinive, textual or graphic informatibion. We will not
consider more general case, when the document can be active-i.e. distributed together with toels for analysis of this document. This is not neeessary, since all data analysis in SCDAS is concentrated in data nodes of the information structure; if the conference participant wants to perform some what-iff analysis he ean easily duplicate the data node and make his private copy; all tools for analysis are available to him all the time (with some natural constraints following from the SCDAS procedure).

Each document can belong to one of four groups of documents:

- Patblic docwments which are generated by the committee president. These documents contain general information about the particular aspects of the problem - in the case of attrifbute it can be, for example, detailed explanation of the meaning of this atturibute, in the case of alternative - information about this particular alternative, like curriculum vitae for personnel selection problem, details of the project for project evaluation problem ete.
- Message docwments which are generated by conference participants as their contribution to the discussion. These documents are available to all conference participants, however the only person which can modity these documents or remove them from the system is the conference president.
- Private docwments (notes) which contain the information generated by the conference participant and stored for himself for future utilization (the notelook). Any document available to the conference partielpant can be imported to the notebook, including help, public and message documents.
- Mail docwnents whieh contain information received from other conference participants or send to other partieipants. This information is accessible exelusively for a person identifified as the receiver and the author.

The documents created during SCDAS conference are linked. As it was mentioned in the previous sections, some links have orgomizational character - i.e. they are predefined by the SCDAS procedure. Documents can be also linked by referential links pointing the information which not necessary belongs to a given category, but can be interesting or relevant from a given point of view. Usually, these links do not reflect the logical relotionships between data, but rather the contextual relationships. All conference participants have full freedom to create referential links - both between structured and unstructured documents.

5 Implementation

The ideas presented in the paper have been experimentally implemented on the IBM-PC computer and the Vax-Mate (the IBM-AT compatible manufactured by DEC) using the SMALL TALK/V programming language (DIGITALK, 1986). The main purposes of this implementation were as follows:-

- to prototype the user's workstation for distributed group decision support system based on the SCDAS methodology and utillizing the standard teleconferencing software like the Telecenter developed at HASA (Pearson at all., 1981, Fuhrmann, 1987) or the NOTES teleconferencing system manufactured by DEC,
- to investigate the feasibility and efficiency of presented concept of documents structumine
s to clarify the ergonomic aspects of the user interface.

Details of design and implementation of prototype system as well as principles of cooperation between the workstation and teleconferencing software will be presented in a separate publication.

6 References

Bui T.X. and M. Jartke (1986). Communications Design for Co-oP: A Group Decision Support System. ACM Transations on Office Information Systems, Vol. 4, No. 2, April 1986.

Bui T.X. (1987). Co-oP: A Group Decision Support Systems for Cooperative Multiple Criteria Decision Making. Lecture Notes in Computer Science, Vol. 290, Springer Verlag.

Conklin, J. (1987a). A Survey of Hypertext. MCC Technical Report No. STP-356-86, Rev. 2, Software Technology Program, December, 1987.

Conklin, J. (1987b). Hypertext: An Introduction and Survey. IEEE Computer, September 1987, pp. 17-41.

Desfanctis, G. and R.B. Gallupe (1987). A Foundation for the Study of Group Decision Support Systems. Management Sciemce, Vol. 33, No. 5, May 1987.

DIGITALK, Ine. (1986). SMALLTALIK/V - Tutorial and Programming Handbook. Los Angeles, 1986.

Dobrowolski, G. and M. Zebrowski (1987). Ranking and Selection of Chemical Technologies: Application of SCDAS Concept. In: A. Lewandowski and A. Wierzbicki, Eds., Theory, Software and Testing Examples flor Decision Support Systems, WP-87-26, International Institute fior Applied Systems Ancalysis, Laxenburg, Austria.

Fubrmann, C. (1987). TELECTR User's Manual. HASA Software Líbrary Series, LS-16, International Institute fior Applied Systems Amalysis, Laxenburg, Austria.

Huber, G.P. (1984). Issues in the Design of Group Decision Support Systems. MIS Quarterly, September 1984, pp. 195-205.

Jarke, M., M.T. Jelassi and M.F. Shakun (1987). MEDIATOR: Toward a Negotiation Support System. European Journal of Operational Research, No. 3, September 1987.

Lewandowski, A. and A.P. Wierzbieki (1987). Interactive Decision Support Systems - The Case of Discrete Alternatives for Committee Decision Making. WP-87-38, International Institute for Applied Systems Amalysis, Laxenburg, Austria.

Lewandowski, A. (1988a). SCDAS-Deeision Support System for Group Decision Making: Short User's Manual. International Instithte for Applied Systems Amalysis, Laxenburg, Austria, unpublished manuseript.

Lewamdowski, A. (1988b). Distributed SCDAS - Decision Support System for Group Decision Making: Functional Specification. International Institntte for Applied Systems Ancalysks, Laxenburg, Austria, unpublished manuscript.

Lewandowski, A. (1988). SCDAS - Decision Support System for Group Deeision Making: Information Processing Issues. WP-88-48, International Institutte for Applied Systems Analysis, Laxenburg, Austria.

Pearson, ML. and J.E. Kulp (1981), Creating and Adaptive Computerized Conferencing System on UNIX. In: R.P. Ublig, Ed., Computer Message Systems, Nouth-Holland, 11981.

Yankelowich, N., B.J. Haan, N.K. Meyrowitz and S.M. Drucker (1988). Imtermedia: The Concept and the Construction of a Seamless Information Emwirommemit. IEEE Computer, January 1988, pp. 81-96.

1．．Csoataq，F．Conuthaji－Howijiú
Computteer and andultomatiion IInsttiltultee
hithongairiian Accoudemy aff Sctiencoess由1－111332 Bhudaqpessit，Wilcttour Hhugeo wu．18－2222．
fhumagary

Abstract

Abstract

The presemt paper gives a socilety modell of office in－ formation systems，highilly motivatted from the theory of biackboard－tyipp distrillbuted problem solvilmg systermps．A fonmanl，generattive system－orilemited defimiltilom of am of－ fice sociletyl is introducoed，usinmg the fact of formell similaritty of ustail intelligent office activitiles to rewritinng systems．．Some notioms are defined for meansur－ ing and charactertizimg descriptive and behavioumran properties of of ficuss．Some startements，illustratimgy the notions and having comparative character are pre－ sented．

Keywords

Office information systems，blackboard－type distributed problem solwilng，office modelliting，formall languages

1． $\mathbf{I N F R}$ RODUCTION

With the widespread appearance of computer networks computer sup－ ported eailaborative activities have gained an increasing impor－ もance from both practical and theoretical points of view．The elaim of inteliigent general tools for and approaches to the de－ \forall eiepment and handiing of the theory and practice of the in－ teliligent and cooperative office has been pushed for time．Office information systems and their levels have different approaches and models of descriptiom，motivated from different practical E8Rsiderations of computerization and computation（（［1］］））．Most of the appragines are either of syntactic or of semantie sharacter， Hsuglily the two types are in conflict．（（FOr a symtactic approach see［ 2 ］）．The different approaches emphasize different aspeetes， Gs pricedurai［ 3,2$]_{n}$ draclarative［［4］of object＝oriented［L5］ gspect：A sqeiety model of office timommetion systems can be frbuhd in［位］．Aftifiaial timtelligence techmiques are used im［77］， Whers an office task execution is comsidered to be a problem sblythg getion．We can casily see that usual computerized ac－
 thete text processing meeting organizatiom，the usage of eilec－ trohle buhletin boards，can be comsidered as dristributed problem sblying getians，sthowing frommal similiarity to the weli＝kAOWh

由lackboard－type distributed problem solvinio systoms．（More details Gbout blackboafd－type problem solving systems and reai－ も立日 computer conferenting can be found in［8，9n10］and［iin］， respectively．）The observation of that cooperative grammaf sys－ tems are generative paradigms（models））of both of the above men－ tioned aetivities and the biackboard－type probiem soiving systems Was presented fifst in 1987 in［12］and［13］．Fhe idea was de－ veloped further in［14］and［15］］．
In this paper we present an offiee－oriented version of this gen－ erative model and we introduce a formaisism for a descriptive charaeterization of offices and for that of their benawiount．The modei is essentiaily an aetor－based soeiety fuodel．（For fuore in－ formation concerning artificial inteliigence motimation the reader is referred to［ $16,17 n 18,119]$ ．Finallyy，we interprete some results of［12］and［14］in this freme．

Throughout the paper we assume elementary knowiedge of the reader from the theory of formai languages［24］．．

2．ThE OFFICE MODEL

By an office we mean a collection of functionaliy related com－ munities，called office－societioss，which collectively produce a family of problem solutiomss，called office－problem solutionss，or achieving goails，called office－goulls．（（Goals are understood as missioms，achievements of which are represented by probien soiu－ tions．）Note that we do not reflect problems being unsolwaile from the point of view of the society．．As we mentioned in the in－ troductiom，problems occurring in and being characteristic for offices are considered in the most generall sense，therefore we make a distinction in the termimologyy，using the prefilx＂office－＂ of the corresponding terms．

We assume office－problems to be well－structureed，that is partilail and final office－problem solutions are considered to be strimgs （（sequentially organized forms））of nondecomposable knowledge pieces（（solution elements））which are called elementary office－ knowledge pieces（loffice information pieces））．（（For examplee，un－ decomposable messages in a real＝time computef conferemce are elementary office－knowledge pieces，）Fof a strimg of elememtany office－knowledge pieces we use the terminology office－knowledge piece．In ordef to make a distinction betweem partial（non－finai） office－problem solutions and the finall solution we asssum that from the point of view of the problem＝selvers elememtary officer knowledge pieces are divided into two disjoint familiiles，depend－ ing on that whether the elementary office＝knowledige piece has final or nonfinal（（auxiliaafy））chafacter．A finall office＝proplem solution is composed from elementafy office knewledige pieces hav－ ing final character．
 that in that moment and in that context from the poimt of view of the office－agent the knowledge piece contailms full informatition about the piece of the world it refefs to．Non＝finmall elememtery office＝knowledge pieces contain infofmation whing shoulidy be of can be developed．（（Considef the case of eomputer eomferempinitg．

The message m Stephen Cook is a member of Group 6.m is final office-knowledge piece for a participant of the conference who knows what Group 6. meams, but from the point of view of a person being not in the possession of this information this message is a non-final knowledge piece.))

Office-societies are collections of interacting office-agents, collectively solving a family of office-probllems., Naturalily, an office-agent can be a member of more than one office-saciletyy..
Note that here interaction is considered in a restricted form, that is, it is realized by the contributions to the problem solving process..

The collection of office-problem solutions produced by an officesociety is called its office-problem solving capaciitty/.

Office-agents are intelligent office entitiless, represented by knowledge sources. ((For examplle, persoms, expert systems, etc.. can be considered as office-agents.)) They have condition-actiom formatt, where the condition describes the situation when the office-agent can contribute to the problem-solving processs.. In this case the situation means that the actual partial solution satisfies some conditilms. The action-part describes the behaviour of the office-agmemit. ((Consider the case of collective text-creattiam. Let "Writing an article about computer networks" be an office-problim. For example, a condition-action representation is as follows: a person (an office-agent)) can rewrite the second section of the current version of the article (can modify partial office-problem solution by performing the action described in the action-part)) if the section contains subsection titled "山ocal area networks ((the conditiom-ppart))..

Referring to the problem=solving processes in the officesocieties, we assume that during the process partial solutions are recorded in a common ((abstract)) space, called the officeboard, which can be accessed by any cooperating office-ageant.. Note that in every moment only the current partial solution is recorded in the space. (We can easily see that the analogy with blackboard-type problem solving systems is obvious. (Fof detailed information see [$[8,9,10]$.$)) The reason of the different usage of$ terminology is the more general treatment of the problems. For exßmple, the message space of a real-time computer conferencing system or a text, edited collectively by a group of persomss, can be considered as an office-board, respectively.)

The problem solving process begins in an initial state of the offiee beard ((office-piroblem initialimatilam)). Then it is continued by consecutive steps, represented by a sequence of partial solutions of the problem, forming the development to the office= knowledge piece being the officemproblem solution and being placed in the corresponding office-boadrad. The partial solutions are obtained by contribution steps of office=ajgemttor, which afe enable to do it, that is, which satisfy some conditionss. The process ends in a previously defined state of the office=beardil, もhat is by achieving the a final solution of the office=pablifin.

The contributions of the office-agents to the problem solving processes are defined as follows:: in every step the corresponding ("the enabie)) office-agent executes an office-actilon, that is makes a modification on the actual partial solution being in the office-bourd.. Essentilalliy, the modification means the following: some parts of the current partiai solution remain unchanged and some of them are replaced by office-knowledge pieces.. Note that we do not require an effective modification of the office-boarch, the case when every elementary office-knowledge piece is changed for itself is assumed to be a contribution stepp, too. Also, we have to emphasize that final elementary-knowledge pieces can be repiaced by office-knowledge pieces, too. We can see that here is the connection point with generative rewriting systems theary/, as, this process shows formal similarity to the notion of a direct derivation step defined there.

As we have mentirmed, from the point of view of an office-agent elementary knowledge pieces can be divided in two disjoint families, that is in the family of final and in that of non-final elementary office-knowledge pieces..
The collection of final office-knowledge pieces of an officesociety is the collection of elementary office-knowledge pieces which are finai elementary office-knowledge pieces of every office-agenti.

Office agents of an office-society can work with and without an outer contral.. The control is used for selecting an office-agent from the potentialiy enable ones to perform an office-actitam. Controis can be static or dynamic ones.. In the first case the control does not depend on the partial solution obtained in the problem solving process.. Dynamic controls depend both on the members of the office-society and on the partial results of the office-problem solving process.

3. A FORMAL MODEL OF OFFICE-SOCIETIES

The previousiy defined society modell is based, essentilailliy, on the notion of an office-sociletyy. The following formal model is a generailzation of a generative paradilgm, that is of the system of eooperating grammarss, which was first introduced in [12] and deveioped further in [13], [14] and [15].. (The notion of a cooperating system of grammars in another form was defined first in [20] and it was generalized in [21] and [22])). Note that in [12] the term "distributed grammar systems" is used instead of "cooperative"'..)

In the following we define the notion of an office-socilety.. We note that we consider office-agents to be of having finite knowledge, that is containing a finite number of elementary officeknowledge pieces. The model is highly motivated by the versions of $[13,14]$.

where
 Where $A_{i}=\left(\left(F_{i}, N_{j}{ }^{\wedge}, B_{i}\right)\right.$, where
((a)) Fir is a finite set of elementary office-knowiedge pieces, cailea final elementary offiee-knowiedge pieces of Ajin,
 calied non-final elementary office-knowledge pieces of Ar, Fin and N_{i} are disjoint sets.,
((c) $P_{\text {f }}$ is G finite set of productions of A个 having the form $P((w)):$ if $\left.\operatorname{cond}_{\beta}(w)\right)$ holds and $w \hat{i}$ is a substring of when replaee W in w by W_{2}, where W and w, are officesknowledge pieces over ($F \hat{i} U N \hat{H}$), w is an officeknowledge pilece over ($(\bar{G} \mathbb{N})$) and condp is a mappilng from ($(\vec{F}$ U N)), into \{true, false)\},
(住) C is mapping from $A \times((F \mathbb{V} N))^{*}$ into 2^{A} ealied the controi of \mathbf{S}_{n}
((iiii)) F is the set of final elementary office-knowledge pieces of S such that F is a subset of every $F_{i n n} 1 \leq 1 \leq n_{n}$
((iv)) N is the set of non-final elementary office-knowledqe pieces of such that every Ni of N_{n} where $1 \leq 1 \leq \mathrm{m}_{n}$
 firom ($(\bar{F} U N)^{*}$ into (truentalse), called the set of startiling predicates of office-agent $A_{i}{ }^{n}$ respectilumelly,
 firom (F U N) * into (ftrue, false), called the set of stayimg predicates of office-agent Ain respectilimerlly,
((wii)) B is a set of office-knowledge pieces over ($\bar{F} \mathbf{U} N$), , called the set of office-problem initializatioms ((the initial states of the office-board)) such that for ony b in B there is an i, $1 \& i<i<n$, such that b is an office-knowledge piece over (iFjî $U N_{i} \hat{i}^{\prime}$),
((wiiii)ACC is a mapping from ($\left(B \times F^{*}\right)$) into \{true, false), called the set of acceptable final solutions of the initialized office-problems from the point of view of the collectilm of office-agents of A.
 piece w over ($(F \mathbb{N}$) then we say S is defined without comuroll..

It can be easily seen that this formall definition is convemiemt for modelling some usual office activitties. Note that the acceptability of the solutions means that the office=agemts have some idea about the solution they should like to achilexue.

Example

Note that if we define elementafy office=knowledge piecess, condition-action productiimss, stafting and staying predicatioss, jimitial states of the office=boafd in an appropfiate way them we
 tributed) grammar system defined in [42]], [[43] and [444i]:

let production of P_{i} defineal os foilows: let $w_{1} \mathcal{X e x}_{n}$ where \mathbb{X} is on element of $N_{\hat{1}}$. Let condp $(w)=$ true for all words w in which $z_{\eta} \hat{\eta} \ldots \ldots, z_{n}$ and X occur as subwords and let condp $(w)=$ false otherwise. Thus, if z_{1}, \ldots, z_{n} and x occur in the office-board represented by word w for which condip (w)) holds then we can replace X by W_{2} - Conditions ((ii-vi)) can be obtained obviousIy. Im
 Condition ((viii)) is defined as follows : ACC($\left.S_{n} w\right)$) =true for every element w of F^{*}.

Next we define how the office-society works..

DEFINITION 2

Let $S=\left(\left(A, C, F_{n} N, S T A R T, S T O A_{1}, B, A C C\right)\right)$ be an office-sociutty, defined as in Definition 1.. Let $w+\dot{q}$ and W_{2} be partial solutions of an office-problem b_{n} initialized in B.
Let A_{1} be an office-agent in A. Let $w_{1} A x y z$ and $W_{2}=x v z$, where y and v are office-knowledge pieces over ($\left(\bar{F} \hat{i} U N_{\hat{i}} \hat{\lambda}\right.$), x and z are office-knowledge pieces over ($(F \mathrm{U} N$)). Let p be a production in P_{i} having the form " Lip condp (w)) holds and y is a substring of w then replace y in w by $v^{* \prime .}$. If compp $\left(\hat{k} w_{1}\right)=$ true then we say that offfice-agent A_{1} is enable to modify w.j for W_{2} by executing one office-actiom..

NOTATION

The execution of an office-action is denoted by \rightarrow.

DEFINITION 3

Let $S=\left(\left(A, C, \Psi, N, S T A R T, S H P_{v} \mathbb{B}_{,} A C C\right)\right)$ be an office-socile in Definition 1 .
An office-problem solving process proc ((initialized by wey and resulting $w_{k} \hat{k}$) is defined as follow:

((i)) $\quad W_{g}$ is an element of B,

(iii)) Wrk is an office-knowledge piece over F such that
$\operatorname{ACC}\left(\left(\omega_{g}, \omega_{\hat{k}}\right)=\right.$ true
((iv)) for every j, 2\&j£k
((a)) A_{i} is enable to modify w_{j-1} for w_{j} and 1

otherwise START $\hat{i} \quad\left(\left(n w_{j} i f\right)=\right.$ true
J

BEFINIEION

The office-problem solving capacity CAP of s is defined
Gs the set of office=knowiedge pieces over F which are results of -珵ice=problem solving processes.

We can see easily, that in the partieuiar ease of cooperatimn ghammar sysytems, office-problem soiving processes correspond to carreat derivations and the office-probiem solving eapacity of the seciety corresponds to the generated language.

虫 OFFICE CHARACTERISTIC

Frirmal models ensure the possibility of the formal characterization of offices from different points of view. The necessitil of formal characterizations is obviowss, as from organilzattiomall, construetional points of view of a computerized office we need formalized information both about its structure and aboutt its bemaviour..
Note that the notions, which wili be introduced in the followirmg, were defined and examined for cooperating grammar systems in [12]] and for the model of blackboard-type distributted problem solvimg systems in [[15]..

First, office-problems can be classified with respect to the simplicity of their solutions, in absolute and relative semse.. Examining our model we obtain the followimg:: we can define an office-problem solution to be simple if in order to execute am office-action the contributor office-agent does not need to be in possession of recognizing large connected parts of/knowing too much about the office-board and its starting and staying predicates do mot presume too much knowleddge, too.
using the notion of the problem solving capacity of officesocieties we can define simple and complicated office-problem classes, also we can imtroduce the notion of office-agemtts witth simple knowledge application capability.
We define an office-problem for an office-society and an office-problem-solution to be simple, if there is at least one way to achieve its solution such that every partiall solutiom cam be obtained from the previous one only by replecing an elememtary office-knowledge piece by an office-knowledge piece and the conditions of the applied productions presume the recognitiom only the elementary knowledge piece being replaced, staftimg amd stayling predicates of the collabofating agents afe assumed to be havling the value true for all office-knowledge pieces and the set of the acceptable final solutions consists of all office=kmowledgye pieces composed of final elementary office=knewledgye pieces. Whe can easily see that this notion covers independemay, and compafed to cooperating grammar systems theory, it ceffespondids to a context=ffee derivatiom.

We say an office-agent to be simple if its condition-actilom rules are of type of the previousiy defined ones. A class of officeprobiems is a said to be a simple class of office-problems if every problem has a simple solutilam. ((Naturallyw, this notion corresponds in generative terminology to a context-free language)).

The next point of characterimatiom is the possibility of defining descriptional complexity measures of offices.. Formalized officesocieties can be described by theif size and structurall properttiless, being characteristic of them and their behaviloumr.. The notions are motivated by notions introduced for formal grammars in [$[24]$.

Size measures for example can be introduced as follows: the number of office-agents of an office-socilesy, the number of condition-action productions of an office-agent (the maximum of the numbers of office-agents of the office-sociletyp), the number of non-final elementary office-knowledge pieces of an officeagemt, the minimal number of non-finall elementary officeknowledge pieces needed to produce the same office-knowledge capacity by an office-sociiestyy, etc..

Structural complexity measures are the following: the number of groups of strictiy collaborating agents, where by a strict cooperation we mean the followimgg: two office-agents are in strict cooperation if there is at least one problem solving process whem one of them developes a knowledge piece formerly produced by another one. An interestimg structurall complexity measure can be the maximall number of non-fimall elementary officeknowledge pieces occurring in partiall solutions of a problem during the problem solving process..

Note that size measures have speciall Importance from the point of view of economy of the creation of office-socilestijess, giving the chance of achievements of our goals in a more economic way by using a more appropriate reconfiguration and reorganizatilom of available resourcess. Structural properties express informatiom about the way of problem soluttiom, giving a possibility of defining office-problem classes.. The second structurall complexity measure defined above con be interpreted as the number of opem questions being involved in the current office-board.It is obvious, that from practical point of view the number of open questions in a moment during the problem solving process is a relevant propertuy. Note that this notion is a genefalization of the weil-known notion of the index of the derivation in formall language theory..

Another important point of examination is the characterizatilom of the behaviour of office-sociietiles, emphasizimg the role of office-agents in the cooperative problem solvilmg. Office-agemts and office societies can apply strategies in the problem solving processes ((implicitely, controls define strategiegs, too)). From the point of $\forall i e w$ of office-agents strategies can be of two types:: seif-strateggiess, which are characteristilc only for the office-agent and are independent from the behaviour of otherss.,
and collective strategies which determine the collective behaviour of the office-agents of the office-sociletyy. Collective strategies raise such type of important questions as the questiom of fair behavioumr.. Without the aim at completeness we give some examples for self- and collective strategies. A self-strategy can be of so-called "one comment"/mfull comment" strategyl. In the first case the office-agent modifies one office-knowledge piece in the office-bourd, in the second case it modifies ali knowiedge pieces which are available for it but there is no knowledge piece which is modified during this process two times.. Two examples fer collective stategies are the followimg: the first, the strategy of step number limitartion, when every office-agent can execute consecutively (at least)) exactiy k-office actioms, and the second, the strategy of comparative competemay, when that officeagent performs the action which is the most (leaste, competent of measure of k, etc.)) is competent, where competency is defined on the basis of knowledge pieces being modifiable from the point of \forall iew of office-aquntss.. Morewer, a collective strategy can be defined an the basis of temporaly monopolitization, which means that until an office-agent satisfies the conditions of the strategy ((and naturally other requirements)) then it continues the contribution process to problem solvimgg. A collective strategy can be fre, where the notion covers functionimg without any restriction.

Note that both descriptional complexity measures and both strategies are in very strong connection with the efficiency of offices.

A. RESULTS

In this section we interprete some results of [12] and [14], obtained for cooperating grammar systems, illustratimg the notions defined previousilyy, with showing the possibility of achieving generall statements for computerized offices defined in an abstract wayl.
We state the theorems without proofs, the technicall details come with simple considerations from the corresponding results of the above mentioned two papers..

The next theorem is an example for the strict connectiom betweem strategies and size and structurall properties of offices.

THEOREM 1

For any simple office-society S defined without comtran, where office-agents use self-strategy of "one commentr" and s uses colleative stiategy monopoilzation until satisfying minimall competency (defined as the recognitiom of at least one non=fimall elementary office-knowleage piece) there is a simple office= society $s^{\prime \prime}$ defined without contrail, which consists of two office-antss, where office-agents use self-strattegy of "fuil comment" and $s^{\prime \prime}$ uses free collective strategy such that theif office-problem solving capacity is equall.

The next statement shows that in some particular cases the pele of an outer controll in the problem solving process is not
reiewant. The theorem is an example for the cooperation of office- agents having fair behavilourr.

THEOREM 2

The class of office-problem solving capacities of simple officesocieties defined without contral, where office-agents use selfstrategy of "one comment" and the society uses collective strategy "executing consecutively exactly k-steps" is equal to the class of office-problem solving capacities of the same type of simple offices defined with controll.

Before presenting our next statement we note that the mfull comment" strategy expresses paralelism and the "one comment strategym expresses sequential behaviour in some sense.. The following theorem says thath, in some speciall cases, sequential organization provided with even some very simple additional features results richer problem solving capacity than a simplle, paralell organizanttilam.

THEOREM 3

The class of office problem-solving capacities of officesocieties defined without controll, which consist of simple office-agerntss, which use self-strategy of "one commenti', and the starting and staying predicate of every office agent are defined as the recognition/nonrecognithon of finite sets of elementary office-knowledge pieces, respectirelly, and the office-society uses free collective strategyy, strictly includes the class of office-problem solving capacities of simple office-societies defined without contrall, which use free collective strategy and its office-agents use self-strategy of "full commemti"..

5. FUTURE

We can observe that our model is highly motivated from the theory of classical(sequemtial) rewriting systems. The cooperative aspect of generation can be imagined as a useful tool for modeling more complicated structures, for example grapinss.. We thimk that the theory of cooperating graph-grammars can be a very promising tool in the modeling of distributed problem solving and can form a theoretical base of handling usual graph-oriented representations in artficial intelligemces.

REFERENCES

1. Difice automation .Topics in Information Systems. D. Tsichritzis Ed., Springer-Werlag, Berilm, 1985.
2. ELtIS, C. A. Information control nets:: A mathematicall model of office information flow, n ACM Proc, of the Comfi. on simullation, Modeling and Management of computer Systems ((Aug.)) ACM, New Yorla, 1978, pp. 225-240.
3. CHANG, J. M. AND CHANG, S.K.. Database alertimg techniques for office activities managementt. IEEE Trans. Commma.. 1 ((1982)), 74-84..
4. GiBiss, S. J. Office Information models and the representation of office objectss.. In SIGOA COmf.. on Office Automation Systems,, ACM, New York,, 1982,, pp.. 21-26.
5. BOOCH, G. Object-oriented development.. IEEE Trans.. Softw.. Eng. 2 ((1986)), 211-2211..
6. $H O, C H-\mathbb{S}$.. AND $H O N G, Y$-Cil. A society modell for office information systems.. ACM Frans. Off. Inf. Systi.. 4 2 ((Apri. 1986)), pp.. 104-13 $31 .$.
7. BARBERR, G. Supporting organizatiomall problem soiving with a work statiom.. ACH Trans. Off. Inf. Syst. 1. 1 ((Jan.1983)), pp. 45-67..
8. NiII, H.P.. Blackboard systems:: The blackboard modell of problem solving and the evolution of blackboard architecturres.. IFHE AI MAGAZINE,, ((Summerr.. 1986), pp.. 38-533..
9. NiII, H.P.. Blackboard systems. Blackboard applicatiom systems, blackboard systems from a knowledge engineerimg perspective.. IEIE AI MAGAZINE,, ((Aug.. 1986)), pp.. 82-106..
10. HAYES-ROIHH, B. Blackboard architecture for contrall. Artiiff.. Intell. 26 1985)), pp.. 251-3211..
11. SARINN, S. AND GREIFF, I. Computer-based real-世ime conferencing systems.. IESE Computer 18 ((Oct.. 1985)), pp. 33-45..
12. CSUHiANJ-方ARJUU, E. AND DASSOW, J., Distributed grammar systems.. To appear in EIK..
13. CSUHAAT-WIARAJU, E. AND KELEMEN, J. COOperating grammar systems:: a grammatical framework for blackboard modell of problem solvimag.. Manviscorijptt, 1987 ..
14. BAumv, Gil. Conditionall starting and staying tests for cooperative grammars.. Manuscripptt, 1988.
15. CSUHAJ-WARRJUU, E., DASSOW, J., KELEMAN, J. AND PAUM, Ginl. cooperative knowledge,. in preparatiom.
16. HEwIIIT, C. Viewing controll structure as patterns of passing messaxges.. Artif. Intell. 8 ((1977)), pp.. 323-3644..
17. SMiTH, R.G. AND DAWISS, H. Frameworks for cooperating in distributed problem solviimg.. IEFE Trans.. Syst. Cyblo. 11 ((1981)), pp.. 61-700.
18. Minssul, M. The society theory of thinkimg. In Artificial Intelligence; An MIT Perspective 1, P. Wi. Winstom and R.til. Browmss, eds.. The MiT Presss, Cambriiduge, Mass.,, 7979 .
19. K巨temen, J. Two notes concerning the society theory of Minsiky.. Computers and Artificial Intelligence 5 ((1986)), 653-52.
20.. MEERSMMN, R, AND ROZENBBHRG, G. Cooperating grammar systems. In Proc. of nifiss" 78 , Lecture Notes in Computer science 84,, Springer-Verlag. Berilim, 1978.
 systems.. In Proc. of Comf.. on Automata, Languages and Programming Systems. F. Gécseg and $\overline{\mathrm{I}}$. Peák Edis.. Karil Marx University of Economicas, Budapeste, 1986.. pp. 75-86..
20. CSUHAM-WARRJU, E. AND DASSOW,, J. Cooperation of grammarss. MEA SZILAKI Working Paper, szi29. 1987,, pp.15
21. SAL OMAA, A. Formal languages.. Academic Press, 1973..
25.. GRUSkA, J. Some classificatilom of context-free languagess. Inf. and Control 14 ((1969)), 152-1799..

HIBOL-2 AS A PNRADIGY FOR END-USERR-ORIENTHD COMPUTING

Roland T. Nittermeir and Heidemarie Wernhart Institut für Informatik Universität Klagenfurt UniversitätsstraBe 65 A-9020 Klagenfurt/AUSTRIA

This paper presents a brief introduction into the design rationale of HIBOL-2 ${ }^{\prime \prime}$ a programming language designed for end-user computing in office environments. The diffenences in the construction process of physical systems versus software systems is demonstrated and used as justification for several design decisions made in HIBOL.

KEYWORDS: Software-Ergonomics, Man-Machine-Interfface, Language Design, HIIBOL-2

1. IINURRODUCTION

The advances in information technology and in micro-electromics brought relatively imexpensive but highly powerful equipment into the hands of broad sections of the workforce," notably of clerical workenss.. However ${ }_{n}$ the adkrances made by the informatics industry outpace the learning capabilities of a high proportion of potential users. Hemce, one has to open avenues which bring computing power into offices without disrupting the existing work structures and without requiring to master new paradigms.

This paper reports on research and associated developments conducted at the Imstitut fiim Informatik at the Universitat Klagenfurt to achieve the goals mentioned above.

HIBOL-2 is an example of a programming language which is integrated within its own programming envirommenth. HIBOL-2 is designed according to a desk-top metapher. An application is modelied as a desk on which fimformation is fllowing between forms layed out on the desk. Describing this fillow of imformation and derivation of new information, the user in fact specifies a program which will then execute either independently or under the guidance of the programaing enviroment..

[^3]During the first part of this research, a number of interesting as pects of software-ergonomics as well as considerations of lamp design could be studied. The implementation gave rise to the dive lopment of an incremental compiler observing aspects of software mevir' and object oriented design.

2. OFFICE SYSIEMS AS A SPECTAL KIND OF MAN-MACHINE SYSTEMS

With the increasing penetration of society by technical systems "offi ces too became invaded by technology. There ${ }_{n}$ the path of evolution and be followed from simple typewriters and calculating machines via eles tronic typewriters with memory to textprocessing systems and fiiltyi equipped micro-computers or highly powered workstations equipped with] powerful text-processing-", data- and information base management sqi* tems and decision support software.

Hence," as with the advent of most socio-technical systems," the qus tion of whether systems can only be used as bought off the shelf "or whether such systems can be instailed as adaptable shelis which will be filled and gradually enriched and adapted by their users beosa relevant for this enviromment. Obviously" as also shown in the lituray ture on man-machine systems (e.g. [[Mune 81]) as well as in works on system development methodology ((e.g. [[FLOY 84])) or office inffomation systems [[BRAC 84" HÁGG 88], the latter approach is to be follomed.

If systems development or systems evolution is placed into the hand of so called end-users," people who are trained in a subject area thar than systems development," one has to search for development paradiof in $_{\text {in }}$ these people can feel home with. Prototyping," i.e. system dernelquphte by planned trial and error [[14IT 85], can definitely be such an apin ach. However, we have to see how far it can carry and whether develo ping prototypes in software is reasonably close to crafting solutions in physical construction.

3. A EAMMENS COMSHRUCFION OR PIYSICNL OBJECHS

If physical objects are constructed by laymen ${ }^{\prime \prime}$ i.e. by their eniusers," the developer enters his hobby-room and looks around in seencil for objects helping to achieve the desired task.

His eye rests on tools as well as on materials. Concerning the tools, he probably possesses a hammer," a saw screw-drivers,"n and fif ke is more affluent even some mechanical devices. The materials at hacd will be nails, boards and other objects which have not yet been ured of which are no longer in use. Then", he starts his work by choosing the needed materials and the tools appropriate for adapting or canbining them.

As for the equivalence to the development of program(ming)-objects, the need for software-development environments, which provide a coherent set of tools is generally recognized by now. The need to provide the programmer or even the layman with good materials to work with i.e. predefined solutions, adaptable and reusable componentrs)) has been recognized only more recently.

The HIBOL-2 environment strives to support this programming by reuse and adaptation. Its top level leads into an archive of semi-finished components of office procedures and of rules for computing data on the basis of filling in business forms. But there remains still the need to construct such semi-finished components in the first place, to adapt and to combine them properly. To describe this,, we turn again to our analogy.

Looking at the development process of simple physical objects," the "hobby worker" usually first strives for obtaining an approximate solution. The direction of approximation is obvious. If one has to cut scmething, one first cuts just a little bit too little off and then fits the piece by successive trial and cutting. Likewise by bending or by other physical and material operations one approaches the final solution via a sequence of successively better approximations where one strives to never cross the point of the exact solutions because oscillations around this solution are hardly possible.

Only with more complex systems, notably with those whose complexity prohibits construction by laymen $_{n}$ an abstract solution, say a blueprint $_{n}$ is made before the physical solution. Designing such an abstraction requires quite different skills than the gutt feeling needed for a fast sequence of trials. The process is also very different. It is not possible to "fit" a design in the way mentioned above. One rather has to aim for an exactly fitting point solution within a single shot. (fonly the infeasibility of obtaining such a fit in certain kinds of system- and development environments lead to the recognition of prototyping as a proper way of developing software systems.))

4. THE SPECIAL MATURE OP PROGRAMMIM6

Programming tasks differ from other system building tasks in so far as they require to develop abstract objects and as they aim at exact solutions in the first shot. This is at least,", what trainees are tought in programming courses and this principal characteristic is in no way invalidated by alternative paradigms of software development such as prototyping approaches or the spiral model [[ROEH 88]. These approaches are rather alternatives to the abstraction process involved with software design which becomes necessary whence a certain complexity/size treshold gets surpassed.

One should note though that even pure prototyping approaches are fee sible only up to a certain size of system/complexity and that bayan this level some kind of (s semi-) formal design has to take place. Thus point-solutions are required at more than one level and the transition] from one level to the next requires a change of representattion.

All design methodologies proposed in the literature strive for seal kind of system decomposition to ease complexity. Their breakdown stra: tegy - how diverse it ever might be - though,, decomposes systems inv variably into distinct functions or functionalities which are, con sidered in issolation complete though. Thus, the development probleil becomes smaller but remains invariant with respect to the nature of the imtellectual task to be mastered by the developerr. There is mosin where room for the gradual convergence of solutions as we see them in building simple physical systems.

5. FORMAL VERSUS IMFORMAL ASPECIS OF OFFICE PROCSDURRES

Office procedures differ quite markedly from the formal and "up to tha point" nature of programming and software design.. Not that they vould; lack any formality; but from organizational theory we know very vell that organizations can function at their best only when a proper relar tionship between the formal organization and whatever kind of infomal organization(s) exist. Would it be different, "working to nule* ((Diemst nach Vorschrift)) would not be one of the most frightrening methods of striking. The challenges involved with desigaing office software become evident if we note that working to rule is the anly mode of operation for computers though!

The difference between the "mathematical" exactness of progreamming and the fuzzyness of office procedures can best be highlighted by dbany ving attempts to formalize law [[SIHM 86]", an area of social organita tion on which the foundation of all modern industrial life is buillith.

How does one cope with this problem? In systems brought into qperatiian: for parametric users," one solves it by leaving them open for mamal fimtervention. In systems which would allow users also the freedan of adaption, eniargement and even (me-)construction, one should staivt for dimensions of decomposition in encess of these for fumdional decomposition (las above," I enconmpass under this term dataraficow, do ject-oriented, or other related decompoaition appreachea, begus eventualily they all boil down to functionalittyr.))

What are those dimensions? We can draw from classical philosaphy tis cistinction between form and contenter. While contents (ontolpgigaliy) is oven in most physical design tasks something one has to settle for in a process of weil considered choice, form is the dimension where 1 afe acoustomed te gradual shaping.

Considering data processing systems," each", form and contents," can be further split up. With form" we can either refer to the visible external appearance," the appeal something has towards the human sensory apparatus," or to the internal or structural form, something which usually remains invisible, which can only appeal to the techniciam, collector or to other species of special experts.

With contents,", we refer usually to the semantical contents of an information system. The bearer of this contents is data (fusmally with static semantics)) and mappings between data (to describe the dynamics of a systemu).

The following chapter will show, how these considerations of system construction ergonomics are incorporated in the progranming language HIBOL-2 and its development enviromment.
6. HIBOL-2: AK ATHEMPIED ANSWER TO THE CHALEENGES OP OFFICE PROGRAMMING

HIBOL-2 [MIITY 87 ${ }_{n}$ WERN 87] is a progranming language which has been designed in conjunction with its programming enviromment to allow software development also for people with relatively little training in programming or abstract design methodology.

Its basic paradigm is a desk-top metapher. It is assumed that a clerk fills in business-forms according to prespecified rules or office procedhues..

The basic organization of the desk," a device containing slots for imcomming data ((imput-forms), outgoing data ((output-forms)) as well as slots for accessing and if necessary changing data stored on files ((update slots)) as well as for performing dialogs with the agent requesting an immediate response service from this desk ((odialog slotan)) are provided. Likewise," there is space on the desk to hold the coarse rules ((sseqnence of action) to be observed when working on this desk,. ((see Figure 1)

The rough external form of the desk is standardized, since we felt there would be little use in giving users an undue illusion of working on his own wooden desk instead of an electronic abstractiom. The details of this arrangement are subject to the users taste though.

The contents of the desk is given by the contents of the forms bound to the respective communication slots as far as the global aspects of data mapping are concerned. At a more detailed level", the working rule determine the sequence in which forms are processed and the level of aggregation, i.e. whether processing should be done on a form by form basis or whether a complete file of forms shold be processed at once.

Defining desks and the work rule is the first portion of work in wat ting a HIBOI-program. The next sequence of work-steps are constiththedi by defining the business-fforms attached to a desk.

This specification of business-forms is divided into a sequence phases for each form with each phase corresponding to a specific a pect of form and contents. The phases are:

- phase 1: layout definitiom,
- 2: type definitiom,
- ${ }^{1}$ 3: result definitiom,
- 11 : optimizattiom.

The tasks to be completed during the individual phases are (see also Figure 2):

Phase 1 - layout definitioms During this phase," the layout of trif business-form is desigmed. The "programmer" can organize the area d the form into a hierarchical set of named subareas as if he would did a form template. The names of the areas should be speaking descrip tions of the data held by form instances at the respective looation Likewise, the user can write strings of text onto the form template, which then will appear on each form instance.

By organizing the areas on the form n_{n} the user implicitely defines the composite data structure for the respective form. Special pervision are taken for the specification of repetitive data structures.

Phase 2 - type definition: While layout definition provided implibitaly the high level data structure,, the typing of elementary items has be done explicitely. The user can either provide a standard type arih] as INIIEGERR, DECIMAL ${ }_{n} m_{n}$ TEXXI, SITRING, DAIE, ${ }_{n}$ or can indicate a range admissible values," thus implicitely also indicating a standard type.

With type definition by range specificatiom, the system will authomatei cally provide a range check.

Phase 3 - result definition: While the previous phases had to do niti data declarations,, the result definition provides the needed proasdrij specifications. The user can write into the locatiom, where the resmit: should appear either the name of a standard procedure identifyar", sud as INPUF or SYSDALE ${ }_{n}$ or an expression dealing with the names of det areas on this or other forms currently accessible on the desk.

The general perspective on form mapping follows a data driven atti tude. Hence, HIBOL-2 does not need any sequencing or control deiken! loop constructs on the forms level. Loops are driven by the (qualify ing) instances of imput data. The respective language constructs aire the EACH- and the FEFCH- statement for instance preserving mapritgs.

SUM $_{n}$ COUNT $_{n}$ COMBINE, are aggregating operators working on complete collections of repetitive data structures. With each of these constructs $_{n}$ conditions can be specified to have only those instances which qualify figuring in the respective result.

The individual procedural specifications are given on the level of the respective form item to which they belong. The overail sequencing of the computations following from these specifications is done according to the implicit mapping dependencies by the system.

Phase 4 - optimizatiom, This phase allows to provide the system with hints as to how repetitive data structures should be implemented. In extreme cases," the user might stick in his own implementation," thus replacing the default implementation.

Considering the four phases of specifying a business-form in the light of the discussion concerning form and contents,, the following observations can be made:

After the initial sequence of form definition, which has to be done according to ascending phase number ", the application developer is free to make modifications to a form in whatever sequence she or he desires. However" ${ }^{\prime \prime}$ one has to observe that layout definition is purely concerned with the external appearance of the form. The fact," that the internal data structure is derived from this external appearance becomes only evident in so far, as it would be more cumbersome to move items across boundary lines of higher level items than to move them within their parent item or to change their external representatiom.

Type and range definition concerns a deeper level of "form"/" because it defines not only the space needed by a value (fif going to the extreme).. The range a data value is drawn from may have deep implications concerning its semantics.

Result definition is definitely the description of contents. Hence," it should be preplanned and not subject to whatever trial and error procedure.

Optimization is the phase dealing with the internal structure of complex and voluminous data. It is hence the phase which concerns the aspect which might yield delight to the insightfull observer only. To stay consistent with our aims" optimization is, therefore, optional. Only if dictated by efficiency of large applications," the developer should delve into this phase. For small applications,, the non-expert builder is well advised to stay with the default internal structures provided by the development enviromment.

7. SUMMARY

Although the process of gradually developing physical objects cannpt be completely carried over to the development of software, the ab stract nature of programming can be reduced by splitting form and contents of software solutions.

The programming language HIBOL-2 and its enviromment can be considaned as an example of incorporating this division. It provides an integre tion of a programming language into its environment in such a way that ($(\mathrm{md}-\mathrm{H})$ users are to a large degree relieved from abstracting all details into the sequential text of a classical programming languages.

REFERENCES
BOEH 88 BOEFM B. W.: NA Spiral Model of Software Development and Enhancement ${ }^{m}{ }^{\prime \prime}$ IESE Computer ${ }_{n}$ Vol. 21/5 "May 88 pp. 61-72.

BRAC 84 BRACCHI G_{-}, PERNICI $B_{. ;}$"The Design Requirements of Office Systems"; acm Trans, on Office Information Systems," Vol. 2/2, Apr. 84" pp. 151-170.

FLOY 84 FLOYD Ch..: "A systematic look at prototyping"; in Budde et al. ((eds.): "Approaches to Prototyping",, Springer-Verclagy, 1984n pp. 1 - 18.

HAGG 88 HAGGLUND S.: "Interactive Design and Adaptive Maintenance of Knowledge-Based Office Systems"n Proc. IFIP WG 8.4 Working Conf. "Office Information Systems - The Design Process'"" Linz", 1988," pp. 1-77.

MITI 85 MITHERMEIR R.; WRequirements Elicitation by Rapid Proto typing"," Informatica "85, Nova Gorica," 1985", pp. 105 - 108.

MITT 87 MITHERMEIR R., WIGRNHART H.; \#Benutzerhandiouch zur Programmiersprache HIBOL-2"\% Institut für Informatik., Universitaät Klagenfuxt,", 1987.

MME 81 MMMFORD E.: "Participative Systems Design: Structure and Method"," Systems," Objectives," Solutions," Vol. 1/1, 1981," pp. 5-19.

STAM 86 STAMPER R.: WThe Processing of Business Semantics: Necessitty and Tools"n Proc. IFIP TC 2" WG 2.6 Working Conference MFant ledge and Data ((DSS-2)","Albufeira," Nov. 1986," pp. U1 = U20.

WIERN 87 WIERATHART H_{7} "MITHERMEIR R.:: "Benutzerinterface des Editors für HIBOL-2-Progranme"; Institut für Informatile," Univensitat KIagenfuxt., 1987.

Figure 1: Example of a desk: Bestand, Preisliste ${ }_{n}$ KundenDat etc. are siot names of type in Kunde, etc. are names of business-forms bound to the respective slot.

Figure 2: Fxample of a HIBOL-2 program at the level of a business-form Names on top of the rectangles are identify form elementis. The contents of the rectangle define result mappings written into this form during the result definition phase.

Figure 3: A set of open windows in(to)) the HIBOL-2 enviromment

Figure 4: Example view finto a desk- and form-arehive The user has verious possibilities to delve deeper end to see mare details about the individual entries into this arefive

DEVELOPING USER INTERFACES:

A SYNERGETIC APPROACH

G. Haring, F. Penz, M. Tscheligi

Abteilung fữr Angewandte Informatik
Institut für Statistik und Informatik
Universität Wien

Abstract

The development of man machine interfaces should preferably be based on building prototypes. We introduce an alternative method to create object oriented user interfaces. The various objects are prototyped separately to form independent units of description which demomsturate particular aspects of the entire system. It follows an iterative combination process in which the so far existing prototype units are assembled achieving a more complete description of the intended system.

Keywords: User Interface Design, Prototyping, Object Oriented Desigm, Software Engineering

1. INTRRDILCTION

Due to the technical improvement of hardware (bit mapped displays, pointing devices, graphics Eprocessors) the software field is migrating to highly interactive software. Therefore the man machine interface is getting more and more the dominating part of a software system, having great influence on the success of the system. With the growing acceptance of alternative interaction techniques and devices by the user community, almost all companies are developing software with advanced user interfaces.

We are involved in the development of an integrated office automation system. This package wil integrate features of word processing, graphics, databases and spreadsheets. The intended useriinterface is based on the principles of DM (Direct Manipulation, [1]) and the WYSIWYG appprach (What You See Is What You Get), known from the Macintosih ${ }^{\mathbb{M N}}$ user interface envinommertt:

- continuous representation of the objects of interest
- physical actions (movement and selection by mouse) or labelled buttonpresses instead of complex syntax
- rapid, incremental, reversible operations whose impact on the object of interest is immediately visible
- incremental learning that permits usage with minimal knowledge
- the effect of operations is immediately seen by the user
- the future printout of documents is exactly seen on the screen

This lead to an object orientation of modem interfaces, which are composed of distinct objectspe senting the functionality of the application. Our development takes place in the Preseatation Manager ${ }^{\text {TM }}$ environment, running under the new $O S / \mathbb{2 n}^{\text {nNM }}$ operating system developed for the powerful 32-bit microprocessors. The Presentation Manager shows explicit object oriented mi cepts also found in the Smalltalk ${ }^{\text {™ }}$ system [2].

Another characteristic of the ongoing project is the separation of the interface design from the ap plication design [3]. This results in the formation of two distinct development groups, refleeting this separation. In the following we only concentrate on the development of the user interfiace and we are not describing necessary concepts underlying this separation.

The altered profile of interactive software systems has great impact on the life cycle model. There quirements definition and specification phase, in particular for user interfaces, is very hard fodb with the historic software engineering methods. It is almost impossible to solve any signifficent de sign problem in a single iteration. As an alternative approach prototyping has been intinedhuedby various authors [4,5,6].

[^4]Prothotyping can serve various purposes [7]. We are specially interested in the possibility of stabilizing the user requirements for the system and experimenting with new and novel design ideas. The ability to gather ""hands-on"' experience leads to much more insight into the problem domain, as one can get with paper descriptions alone.

Based on the classification from Weiser in [8] we are building user interface prototypes. Prototyping techniques can be mainly classified into three categories [9]: prototyping for exploration, prototyping for experimentation and prototyping for evolutiom. As can be seen from the following sections we adopt the experimentation approach to determine the adequacy of a design step. Further we also work in an explorative manner, because the prototype can generate new requirements for the product. The final prototype however need not be thrown away as proposed in most definitions of explorative prototyping.

This paper describes in the following a form of prototyping applied to our specific project demands. To begin with the prototype cycle preliminary functional requirements have to be established. A Synergetic Prototype is then constructed, which finally forms a superior specification of the target user interface.

2. THESSMNEHRCHENICABHRPCOACCH

The synergetic method is comparable to the strategy applied for sticking together the pieces of a puzzle. The player starts with the single parts of the puzzle, showing only a small facet of the entire picture. Figure 1 gives the imagination of such totally unorganized spread pieces.

Figure 1

Now the player tries to identify some related pieces to form a more complete picture unit, pudaditj by looking for pieces which show similar colours or shapes. As everyone knows, the dinididingin between the units is not very clear determined. The same problem can also appear at the fumcionf decomposition of software systems. In figure 2 we see some assembled picture subprart.

Figure 2

The completion of the picture is done by the successive combination of the so far obtained sulppris This results in a complete picture as shown in figure 3.

Figure 3 [10]

3. BUIUDING UTP A STYSIIENM AMODELL

We use a similar approach for building up the system model as proposed from Budde et al in[]II The starting point of the user interface development process is the intended functiomality of thelii ture product. The first step to obtain this functionality is to determine the so called working objeci in the planned user model of the planned application. These working objects are the objects mailh ulated by the user in his mind. They are reduced to their relevant aspects and then their positile states are identified to form a presentation as elements of the system model.

A typical example for such a working object is a folder in a filing system. The user will imagine a folder as a thing he already knows from his deskwork. A folder is able to hold files which may be documents in the users mental system model. Relevant aspects of a folder are the ability to have a name and to keep the contained documents (files). The state of a folder may be open or closed and is further determined by the contained documents and the folder name.

The functions, the system should perform, are grouped in an object oriented manner with the objectis they act on. The operations which alter the attributes have therefore to be identified for each object. The states of an object may only be altered by the operations which are classified to it. The objects forming the users system model should thereby get a functionality which is close to the functiomality of the real object in the application domain.

For functions which have a sufficient importance, we introduce so called functional objects, enabling the user an easy access to this functions. An example for such a functional object is a waste-paper-basket which is a presentation for the often needed delete operation. Functional objects can serve as a presentation for an operation (here: delete) applicable to different working objects. The delete operation presented by the waste-paper-basket may for example be valid for a folder as well as for the documents inside the folder.

4. PROTOTMYPRNGWMIIH TIHEESXXNERRCEIIIC ANPHRCOACH

The now obtained system model forms the basis for the synergetic prototyping process. To start the process, the user interface designer has first to produce an object description for every object contaimed in the users system model planned.

This design process relies on the knowledge and experience of the desigmer. The screen layouts should be made by a commercial draftsman in cooperation with the interface design group which bears in mind the functional aspects of the system. The commercial draftsman knows how to draw a waste-paper- basket that an user will recognize as a waste paper basket and also introduces aesthetical aspects to the user interface.

Because of the prototyping approach, a detailed elaboration of the object description and a cauful adjustment of the interface layout to the system functionality is not as important as it would be within a normal (waterfail) development model. In figure 4 an example of an object descripution for afolder is given. It is composed of the screen layouts and a short description of the system functionality seen by the user when he is working with the folder.

The object description is used as a supporting document for the initial conversation held between the interface designer and the prototype programmer. It also supports the prototype pughamier in his work. In the initial conversation, the interface desigmer explaims the described object to the' prototype programmer and so defines his job. Now a well known iterative prototyping processfol lows. It starts with the realisation of the described objects followed by an imteractive ewalhationiin cooperation between the interface desigmer and the prototype programmer. With the following correction a new iteration is initiated.

Only the objects and the functions corresponding to a single object are concerned in this firstippobio typing processes. This functions are named intraobject functioms.

When the result of the first prototyping process is satisfying for the interface desigmer, a prethtype exists for each object described. The construction of the symergetic prototype continues by combiining the now implemented objects into a new prototype. This combination is dome in ome or more steps combining objects or groups of objects until a final prototype is achieved.

Every now obtained prototype shows more of the functionality which is formed by the copporatio of the assembled prototypes. The functions making up this functionality are nanned iutturbije; functions. Because of the cooperation of the so far realized prototypes we term the set of prodtrec prototypes a synergetic prototype.

It may happen that an earlier prototype is affected by the correction step. In this case, the affect prototype has to be built again and also the combination of the parts to achieve the latest protody has to be done again. It is not allowed to alter the presentation or the functionality of am objectora group of objects in a prototyping step later than the step where the functiomality was introduced.

Folder closed

Folder opened

by double clicking on the closed folder the selection menue appears centered to the mouse position.
Selection Menue:

Delete Options Box:

Only one of the two entrys may be selected by a left mouse button click.

Clicking the OK bution confirms the adjustment, Cancel reestablishes the state previous to the box activation.

If the user clicks the left mouse button:

1) outside the menue box: the selection menue is canceled
2) on the button containing: "Delete Options" the coresponding box appears
3) on the button contaiaing: "Tittle" the coresponding box appears
4) elsewhere: nothing happens

Figure 4

The prototype which shows the functionality of the whole system is called the final prototype. The set of all implemented prototypes is called the synergetic prototype.

5. BUIIDINNG UPP AN USSERR INTTEDRFACESSPHECIHICCATIICON

The result we want to obtain by the application of the synergetic prototyping method is a sprecifica: tion of the user interface for the software system in question. This specification is formed by a hieraf chical organised set of description units containing the prototypes built.

To get these units of description of the prototyped presentation, every realised prototype is indud ed in a predefined description frame. Every unit of description consists of three parts: The prode A type itself which shows the functionality by allowing the reader of the description unit to get afed ing how it works. An explanation text serves as an user manual to explain the functions sthownbj; the prototype which are not shown in any earlier produced description unit. The third part is the programming text which implements the shown and explained functions.

These three parts are maintained by the description frame which also serves as a test emwinommeat for the programmer of the contained prototype. The units of description are used as a doumeatia tion of the produced prototypes utilized by the desigmer- and programmer team of every further prototyping step as well as by the implementors of the final product.

The complete set of prototypes, the final synergetic prototype, forms a well structured supperior usa interface specification. This specification normally will act as milestone preceding the further de velopment steps. An alternative possibility could be the subsequent treatment of the final symer getic prototype to realize the target system. In this case an excessive quality control is nexseajto achieve a sufficient system performance and system security. We recommend to apply this quality control not only to the final prototype but also to all single prototypes existing in the symmenctic pro totype hierarchy. For this task the previous generated description frame can serve as an useM aid.

6. COANCLUSSOON

We introduced an alternative method for the development of user interfaces based on the concepts of an object oriented software architecture. The construction of our prototyping approach took place according to the features of the underlying user interface environmemt.

Further research has to be invested in a automatic or semiautomatic support. A Computer Aided Synergetic Prototyping (CASP) could combine several tools. The documentation, realized in our project with the description frame, has to be further improved. The integration of the single prototypes to more expressive ones should also work with a sophisticated automation, minimizing the prograuming effort.

REFFEXRNCES

 1983), 57-69.
2. Goldberg, A. and Robson, D. Smalltalk-80: The Language and its Implementation. Addisom-Wesley, Reading, Mass., 1985.
3. Draper, S. W. and Norman, D. A. Software Engineering for User Interfaces. In proceedings of the 7th International Conference on Software Engineering (Orlando, Fla., Mar. 26-29,1984). IEEE Computer Society, LosAngeles, Calif., pp. 214-220.
4. Blum, B. I. The Life Cycle - A Debate Over Alternate Models. ACM SIGSOFT Softwore Engineering Notes 7,4 (October 1982), 18-20.
5. Gilb, T. Evolutionary Development. ACM SIGSOFT Software Engineering Notes $\sigma_{r} 2$ (April 1981), 17.
6. McCracken, D. D. and Jackson, M. A. Life-Cycle Concept Considered Harmful. ACM SIGSOFT Software Engineering Notes $\mathbf{6}_{n} 2$ (April 1982), 29-32.
7. Hekmatpour,S. Experience with Evolutionary Prototyping ina LargeSoftware Projeet. ACMSIGSOFTSoftware Engineering Notes 12, 1 (Jawuary 1987), 38-41.
8. Weiser, M. Scale Models and Rapid Prototyping. ACM SIGSOFT Software Engineering Notes 7, 2 (December 1982), 181-185.
9. Foyd, C. A. A Systematic Look at Prototyping. In Budde, R. et al (Eds.), Approaches to Prototyping. Springer Verlag, Berlin, 1984, pp. 1-18.
10. Cowlinshaw, K. C. Computig for the terrified. IBM Perspectives in Computing 6, 2 (Fall 1986), 16-19.
11. Budde, R., Kuhlenkamp, K, Sylla, K-H. and Züllinghofen, H. Programmentwieklung mit Smalltalk. In Hoffiman, H-J. (Hrsg.), Smalltalk verstehen und anwenden. Hanser-Verlag, Münehen, 1987, pp. 90-121.

BEYOND DATA CRUNCHTNG: A NE W APPROACH TO DATHABASE INTIERACHICN

E. Knuth, A.M.Wainna+ ${ }^{+}$, Z.Bedo, A. FHemáadi

Computer \& AbHomation Institate Humugarian Academy of Sciences

\# uminersity of Tampere, Tampere, Finnlatol

Abstract

Ith contrast to traditionial data processing ("clataz crunching"), a number of innowative ideas ("Hryper'systems, integrated sheets like 'Excell', thee wholle phenomenon of "Macintositi", ltio.) hawe emerged lately (o) prowide nompraghamming (generally applicable, tum-key) solutions for office., management-, and persomal information systems. Whe wish to step further in that logic by narrowible our scope to only one component: the database. A new mechanismis introaluced which prowidazs multi-contextual simultaneous data access withl intersession resident comtextmanagement and contextassociated operation-intenface (in contrast to subfunctionoriented language-interfaces of traditional systems).

Keywords: database interactiont context management multiple views;; Hypertext; electronic encyckloqjediba.

1. INTRGODUCTTUON

Background

Wixe all remember the initial heroic era of computer applications when instructionn spe日d was the only significant paramater to learin and computers weie almost oxclusively used for numnic computationts: 'to crunch numibers', Wheeigghts hawe been significantly shifted lately (first of all towards symbolic computationss nowadays), as numerous papers in the volume emphasize this. It is not so obwious, however, that though database management is a much younger area of wide appolicability, still a similar trend can also be identified here.

Traditioual data proceessing systems (e.g. payroli, banking, insumadnce, etc.) are chabracteristically based on batch operatiods with predefined transactions and
 DEMCS sublanguages. Frominent examples for these aproaches are e.g. [1], [2], [3].) They are born to 'crunch data' - an important thing to do (to free the white collar staff), but the centre of interest in data systemis has become radically different in our days.
 of the future. Trewals like inyper media systemis, electromic encyciophedian, associative retrieviall, distribultéd knowikdlẹ banks, boulletini boardis, teletext, ètc. will all lead to completely new fothis in human working conditions, in cooperative human behaviour, and in information acquisition in general.

To increase the productivity of nonprofessional computer usage, the indefersibility of puzzle solvine practice has long been realized [4], [5]. Thoulgh recent developments in man-machine communication techniques are ionpuessive (e.g. [6]. [7]. [91], [ibd]), it seems that the database community has not yet utilized the power offered in its real nature.

This paper considers one of the fuddamitental factors common in these tremds, the way of interaction itself - along the linee as emergine new man-machime eommunication techniqules (multi= wrinhows, wiews, contexts, iconic techniques, the 'MacIntosh phenomenon', etc.) constantly spread. Infodmation in the future (e.g. in public, office, and persobal systems) should 'throw itself' at the users, clearly offerine all modes of its explorability, in contrast to 'mining in the darkiness', (as most language-orinted approaches dol).

Phylosgany

Elelow we give a list of considerationis which we beliewe new approatches should support. Sowle of them have already been posed by wriper-text systents tow. Wie claim however to step further by narrowideg the scope and dedicating dur concents to the database area.
 can be used at the same time showing different wiews and or different pieces of informatiod, bin logeing out, nornally all these working contexis are lost and have to be rebuilt where starting work again. The first point is therefore to introducee a kind of a "Coontext manager' (with its own resident inforniation base)) enabling multi-contextual data-dialogules to survive.
 it can be useful to see the changes caused on pieces of information displayed in other parallel contexts (in a real time way). So the next point is ta make contexits sensitive to chancress taking place in thee blatabase.
(3) Reflections wersus facts: Dialog contexts present 'reflectionis' (frount wariquss viewnoints) over the real data (thae 'facts'). Thee wortd of refleectijonis should obey a solficontaine of infornation model (tow be mapped to thee database scheme)). (THee idead is thee safole as that of 3 五 geometric modelinin. .)
(4) Transforthullionsl integuthe thie world of facts should only be availabile wian reflections. biperatiods acting on refleectionds may or may not alter the facts themselves (olepending on 'mooles', see later). Ass a basic rulue, howew'er, nothione may change in the database whicich is iot changing visually on the screed.
(6) Operetional contexts. Traditionaldy, operations are associated with database subfunctionds (entry, updiate, gilueyy, ete.). Theey shouldi, howewew, be assaciated with reflectionss in contrast, withion a uniform framework aprovidideg all subfunctiodis in one. (Itin such a wayis wonking contexts will not be lost whem changing from one database subfunction to another.)
(6) Nomprogranuming paradigh The usual method of relying on database
 interaction should merely be based on templates and icoms supposimen mos syntactic knownledbee of thee user.

2. SOME NEW CONCEPTS

Heie whe heuristically outline a set of possible new concepts on which a different type of interaction scheule can be built. Formore exact definitions see [8].

Data-picture

Intuitively, a datakicicture or simply a picture is a reflection over the database, to which a meaning is associated at few. examples of possible meanings are as followis:" an "entry fonn for a tranical input data", a "tratisient piece of temporal infonmation on ss.", a "detailed report on se. to be prontected", a "piece of the database schemte fram a given context", a "specification of a typical query", etc. alll operationss to be dicussed later are associated withl pictuliess themselves. (Nottice the differemhee: thetre will be noø operations associated witid the special meanings listed above - what conventional systemis do.)

Fictures usually show a set of data interiontiected in a meaningful sense. They obey a general structural patterm, a hierarchic arrangement (with any number of root nodes) in which lach subordination expresssess an exisitiog intercommectian (associciation). See fiegure belown.

1

Galllery

As a consequence oi our approach, an information base to be managed splits into two separate parts: the database (a conventionail part), and the "pricturee boase" to be refered later as the Gallueny of pictures. Eiqth hawe specific integrity rubes and properties whicich have to be mantained paptly independently. Thee Gallery consists of all resident pictudes surviving a sassion (a visit to the Giallery). Thae Gilliany itself is dixided into various regions as showm in the figure below.

The 50 -called Exdhontionis the region wisitors normally enter, where all pictures are thoroughly maintained at all changes of the information base. Ficturees of the Exhibition may be opemberd(als?laymed) or closed(mox displayed) at a given moment. A distinguisheal one is the Current picthute, the one wee are just maipulating.

The other major part of the Giallery is cialled the Archive storide pictulies which are still valuable in a sense, but which are not mantained regularly any longer. (Typically, it might be e.g. an important long report, whicob, at a hatier time, is not necessarily consistent with the actual database.)
 which are still in a condition to redisplay theem in thee Exbibitionn, on reaulest. (Lie. they are still consistent with all actual integrity propeentiess of the database.) Thee second, which wie call the Mouldy region is the stote wibeite picturess are
abondoned. though not yet disearoled. (titue restoration of such a picture can be expensiwe, ne edine special te chniqulues.)

GALLERY

Pinally the studio serves as a restoration area with special equipmemts (operations), as well as a receiving area to adjust pictutes imported frain the outside enviromishent.

Qualificstion

 with ach of them. The following classes are consideredt:
(1) Sketch The default quabification for newly created pictures. They are transient ones, and are discarded after the gailey-visit (walless reajualified before)).
(2) Propkents. The nonmal qualification of resident picturas. Eloth "sketches" and "properities" are constantly maintained durimg "perfanntandees" (sessions), but neither are protected against "ibivalialation" them (i.e. data scheoniee chiangess contradicting to their structure - see later.)
(3) Protected Such pictures Eannot be inwalidated. Ansy action (an the active picture) inducing structural changes on any protected one (i,e, alteration of the referted piece of the database schema) is refused,
(4) Master piece. Theese picturies are strictly prottected, Not only their structure. but ever no data value refered by thein are alterabien. (Cheatima protequed
pictures and master piecest is also a way to localize transformability in large vatumble databases.)

In addition, there is a fifth class called the Standard ons being the set of the "sysstiem defined" picturess. This qualification is not available for the users, standard picturnes themselves are, however. (thesse ean also be used as typical fragments, "seeds", from which picturdes can ε onveniently be composed by enriching them.)

Status

The following set of propenties is directed towards the eontents of the pictures displayed. They express important eharacteristic propeenties with respect to the mapping which intercathects pictulues with the real database.
(i) Valliti a plicture is called 'walidy' if. in all respect, it confonmes with the actual database contents. (t,ee, its subordinations eorrespond to existing associations in the database, and all their actual data exist exactly in the reterred context. For a formal definition see [8].)
(2) Filled. A plicture is 'filledell if it does not contain unresodved open reterencees. (LLe. all its reterences refer to values whenever thase exist. See more formally in [8] 1.$)$
(ai) Saturated. A picture is 'saturated' if all its nowlear nodes are referentialliy complete.
(4) Ewaluated at picture is 'evaluated' if all its domain fieldels are of value twhe. (Typically, evaluated picturess are results of queries.)

3. OPEERAMTGMSS ONNPACCTMIEESS

There are two uniwerises to be maintainedt the "reality" " "tactis", i.e. the database itself) and the wrold of "reflecections" we see (i.e.e. the Fictures). In primciqiplle, the "reality" is directly' not aceessible, but by "reflieections" onily. Dratadiase updlate is realizedby consequences of picture operations exclusively. The world of pictioness, howewer, is also a selferntained one in a sense. That is, pictures can also be transiormed in a number of ways without altering the reflected facts (alata) themselves.

Operation mades

 three modes given blaw ían be associated with any of the operatioms listed (except Stand
(1) Free mode This mode is provided (and can only be used)) for temporall

 the Exhibition of Gallen.

 follows: 政henever the validity constraint is contradiated, the databatse is updated so that it will be met again.
 of "precious" pictures (see picture qualifications).

Operations on subpictures

This set of operations are combined with a preselection of a subpicturte area to act on. The selection procedure, howewer, is restricted (automatically)) so that the seliected piece should itself constitulte a pictule. A 5 tromger wersiهn may additiondally request that the remaining part must still constitute a pictune (i.e. a subhierarchny is extracted from a hierarchy such that the remaining part may biot hawe undinnked branches.)
(1) REMOWF. Remowes a selected part from the pictume. Im the "emforcing modec" the corresponding data objects are also deleted. Niouticee that it may alter thex picture's validity. (Some finer distinctionis can also bie miade concerning ote future of the selected piece, see [S].)
(2) MOWF. Mowes the salected part a) to another location in the pictume, or bi) tol a location in another picture, Imwalidation of the target pricturee is reiulsedl in the "check mode", while validation is enforcedi by databasse uppratite im thes "enforcing miode".
 unaltered.
(武emhark: thewe are four additionial operatioiss associated with status transitionts
 subpictuldes. These, how iewien, are not affected by operiation modes.)

Line oriented operations

These operations are combined with the preselection of a particular picture line.
(4) UNFOLD. This operation expoulbde unshown associations in one step, Thae selacted linte is "whinduled" resultiang in a new lewel in the hierarchz. (Thiss operation always preserwes the "tidled property. Diperation modes do not make differemoes here.)
(6) NEW. Addang a new picture libie to a desienated place in a hierarchns. Dperatien modes act consistently as definead.

Token oriented operations

 "walue", a "ddomain", a "relation", atc.)).
(6) GIWE. To gixe a particular instance to the place located. WWitme the place referred to already contains an existiong token, it is replateed by the new one (throughout the wholle Giallery, depending on the operation mode applied). The new object inherits all the associations its predecessor had possessed.
(7) DROP. To abahdon a prewiously occupied place in the picture. No checking needed in the "check mode". Wihen being in the "enforcing mode", howewer, the corresponding data is deleted, too.
(8) CLEABR. Cilears all data instances from a whanle subpicture selected, A skeleton remains (the correspondidig part of the scheme). When in the "enforcinigs mode", all data objects referted to are also deleted.

Organization

 object itself is accessible as a wholle only. It contrast to Gialleries, there are no direct operatiods associated with it, (wisititors are welcommed in Gallerizs only.) TQ a giwen database, any number of Gialleries can be assigned satisfyime the common demand to ensure personalizeot views and taylored communication pattems wriont respect to a common information base.
 thiss logical level, pictultess ass seffcontanned objects are subjectss to transactionss:
 movaleopy picturess. The tarect, in case of thee last pair, ean ather be a) a region ibl the same Giallery, or by another Giallers.

Consider an ultimately simple data model consistime of a set of atoms mad binary connectiodis ower theenl. Adm atomis considered as a (typer, wadue) pair, whijue a connection as a reilhametatom, atom) construcit, whilete the particiqpationg atodis are unordered. Examples:


```
atoms: person: Thborlas Jeffersom;;
```


Relations are defineod by factorizationis of connections by participhatine tyenes, (e.g. "author (document,person)" is a relation abowe where the pair of tyenes is considered again to be unorulered). whote details on identity and integrity constrainuts can be found in [8].

Eelationls or connections will be represented by hlentation in a plicture and will be
 suboralination in any directidian, e. e.

document: bleclaration of Indenipemderice
[author] person: Thantas Jefferson

represent exactly the same datalase contentis as
persom: Thootinas Jeffersoin
[author] documentic: Deciaration of Inderpemblemace

Pictures will then be defined as follows. A pleture is a mimbiach (ionest) of linest where

Line $=[$ deethame $]$, twere, doutain:
domain= walue \| expression \| empty;

Relation nadus may appear in nonroot lides only (and can also be the empty string). Evpression desieghates a set of wadues (e.g. a regular expression in the teronimoidgy of LTNIX), whille emboty repressentits the uniwersal quantifier in the samie sense.

To understand all these properuly, remember that pictuldes are real multi-puldiposse objects. Entry fomis, query sperificationis, the schemte itself, reponts, etc, are all

5. EESERECMSSISS

Creating an entry

The mast elementary axercise is filinin recouds. Dite of thee possibue ways to do it might be as followns:
fail CRSATS 3n Enipty Picture;
(b) Enter a prototype record in FREE mode;
(c) VǴLIMDATE;
(Notice that by this step;
(1) The system learns the data scheme;
(1). The actual data is stored too.)

(e) $S A / I E$ it as an entry formi

Live contexts

The open pictures of the Exhibition (preferably as selfcontained windolows on the scyeen) liwe paraliel. It pribacique, they ail are refresthed contimulduly. Therafione, whe may watch the consequetices we cause (by operating on the active picture)) from several inwerted contexits. Thite followinid figute shows an example for such an arrangement.

Transfer operations

Typically, pieces of infomation recordeot in ad-hoc situations might mot be
 record something which looks like the leftorost picture in the figure below. Lated, we would haridy need it as a typical entry form with exactly the same pattem. Therefore, it is better to recompose it into three sepuarate forms for futturte usse, as silbowih.

Moving or copying parts of pictultes are alse impertant in the oppositte directionn, i.ee. constructing complex pictulies by reusing typiceal pieqees franal otheits. Thinnk, for
instance, of query faograthining. specificationss of complicated queries are to bee stored normally by well identified picitudes. At a timle, wee may need to joid them in an unusilal waw. siuch queriles cian easily be contructed by appropriatie subpicturie transfers.

Using available tokens

Nothine is more disapponting than failine to identig some existing takems by mistyping them. Therefore, it is essential to proxide a full service to choose available tokens in all possible operational contexts.

Membls for "evailatode towens" based on the actual database contemits are offered for values, types, and relatidiss equallis. These menus are always customized for the actual situation they are called. (Lue. using availabie tokens never inwallidattess a picture.) (E.g. a simple use is havine a field for sobie keywolds belonging to a relatively small but passibly changing set. Tymaiailly, we never want ta retjibe (already used) keywordss again.)

$$
\pm
$$

6. EXTENSIONS

Other data models

The ioled of '位a-picture' relides on the unifomization of interaction patterns corresponding tol all possible dadebase subiunctions. Remember that withion the definition of 'Picture' we vaguely referred to 'associations' which connect items. Since there was only one kind of association intradulced in our simple exaple data model, everything was wery strajghtforwaral. Naturally, the richere the data model is semantically, the haroler it is to find such a uniform repdesentatiodn. Diata elements withith complex data models can be intercominected in a number of different ways

Whe think, howewer, that this kind of ultimate uniformity, thaukgh elegant, is mot the most important point. If necessary, subversions of pictarsess covering different functionality may well be intronollaced. Whithat is really impontanit, is the lixee management of survivimg multiple contexts as listed in thee regunitements. Thessee requidementis are independent of data models.

Concerning the ratege of data models to be apmied in thes outided framework, we concludeal the follownithe:
a) The example model contained in section 4. together with slight enrichaments (ex. britiching the available choice of kidnds of relations) can well serve for officee applicationss (especially for the non-practatimer community).
b) Classical data models (like netwonk relational) mifent first of all be eonsidered as progtamoners paradighs. Such data models do not serve immediately for end-user access. Their user interenfaces are normally established by proghatmonine methoals to satisfy specialized functionss. Thereiore, these mblels serve first of all for' diata crumehimg' problemis rather than prowidibng direct interaction.
 [13]) can be mentioned. These models are apriory dedicated to sophisticated users prowiding exceptiomally ricit and effective means to handle complex and abstract information structumes. since the full comprehension is essential whem working with such databases, a Gallery-like interaction mechanism seems to be an important challemge to realize. Whe think that findibee, such a techorigiple might constitute a possible high end within the research we are carryine out with respect to database interaction. Ais number of open questions ave hopurewer posed by such ada approachl.

More advanced technical means

All the technidides mantioned so far can be realized using only textual lidess with constant scaling. since most personial computers go no further in the matter, it was imparivant to fix what the new approach can reach at this lewel of technical toods. There are, howewer, a number of futume possibilitioss. At few: of them are as foilows.
a) Contimudus zooming. Frowiding a full structurad wiew scaling dowin evarything to any appropriate level (even unreadable!) with the capability of continoulds blow up for any desired point of information.
b) Real-time magnifier. A magifiler of adjustable size and endargement ratio whicich can mowe across a picture whide blowidig up details in a real-time way.
 to resiolent only wien releasine the moxuธะ.
d) Real-time inwersiodr. Showing prespecifleol inwerted contexts in a rumining fashion while drageging down a master pictulde..

Naturalix, all these ean be combined with graphice representatiods oi iogicai interactidかs.

R起匡區匡NCWS

1．U＇

 1986.

 CA A99404

 Sciemices．政uladeest， 1988.

10．GiEMI Fragrammertss Towikit．Dtigital Exesearch Ina．．
 Hewnentefackard Labooratorikes．Fialo Adito， 1988.

 Protkond，Drea＠mit 1986.

COMPUTERS AS SCIENTIFIC CO-WORKERS : SCOPE AND LIMITS

Beat traam Maalle, Guimuer Sehwler
Institume für Psyehologie
Karl Framzens-Umiversitait Giraz
Schubertstir aise tisa/III
8010 GRAZ

Abstract
Dewelopment of Al teclmmoliogy has brought about severall tools that will soom chamge a sciemttist's work. These tools mot only hellp ta meret burdemmame tasks but allso begim ta imflueance the process of seientiffica discomery. Speciializzed expertt systteams wiill be desiigmed which should represemt knowledge that is procured by the exponemtiialllyy imereasiimg amount of publiistheed scientifficc work amd which should make imfercences from this knowledge, thus generratimg new hypotheses and offering imterpretattioams of giwen research data..
An outliime of possible imteraetioms betweem experiimemtall sciemtiisttes amd speciallyy desiggmed eompuiter systteams is givem. Deesiderata of seientiffice expert systteams (SES)) are presemited amd am example of recentlly develioped SES is imturodtuced..
The use of compuiter systteams im the process of researcilh will have diverse consequenees, botlm improvememts amd dangers. Some of these consequemees for universitty education amd for the strmucture of researclm are sketelmed..
Finally, smme philøsophicall consideratioms with regard ta lïmits of imtelliiggemint compputer systeams are presemted..

Opttioms of possible support
Im the eourse of researath eomputters have become irreaplhacreablle tools. The maim tasks am experimentall scientist is comfromiteed with will be outhinned in the presemt seetiom of this report. The focus will be eentered on allreardy availlable amd om possible mew ways of support by adequate comppuiter systteams.
There are 6 maim steeps of worlk for am experimentall researclmer::
(1) Statiing the subjeet of inverstigatition

The primary paradiggom of expert systems used im support of seientifiic imvestightioms is ta ereate new hypotheses amd to poimt out imeomsistemit research data. A fijrsit stteap ta devellop suclm a device was made by SCHULTER, KNOCH \& MAALLE (1988).. This prøgaraam package was named "sscciemttifiic Cormssultamt" (SC) amd it willi be discurssed im Sectiom 2-.
(2) Informatiom rettrieewall

The expomemtiall imerease of published seiemtiffice work ealiss for speciallyy desiggmed information retrieewall systtems, the prerequisitte of which are user-frieemdllimesse, efficcaccy amd direct aceess ta rellewamt imformatiom. V.HAASE amb eo-workers have reemtlyy
startteed a project on such a tooll named＂Smart Asssistamat ffor Infoor （nゅation Returieval＂＇KSAFFIIR）．
（3）Readimg and understtanndiing the essentïall reaceardth resultss
Acccurmul kation of theoretilcall and empiiricall knowledge shoulld be structhured and organized by dynamic knowledge base sysstemms that］ are comtimuously updated by severall scientisttss warkïng im sinmilaid fiellds．At present most data bases im use are priiwattellyy organiviezdy thus lacking the posssiitbilittyy of knowledge exchamge．．The proceesss oi filltteariingg out and understamadiing the reelleewamce of inffommatiion cafr be improved by computter programss carryying out so－calllead methaarmaj lyses on the vast armount of statiisstiiccall dataz thatt usuallyy emmergy from emppirical research．Expert systeams＝such ass SC＝supportt thi umderss tamding of data by providiing impllicatiomoss oult off a paoll off complex imformatiom．
（A）Plamming and carryimg out am experimemt
 systteams wiill soom be able to plam ewem cruciall experimemts madij work is yet to be done to achitwe suclln a goal．．And itt may probabbjl tramsgress the 1 im its of Psycholdogyy or Sociolloggyy．Fimediing am aderj quate method of meansurement for a variiable of imteresth and con－ trolliing as many other variables as possible are creattivee proH cesses and－up ta now－they cammot be repllaacead by inffearearnce froij meetthordoollogical postulatiiomins amd other well l－deffinreat premiseess．Tis problleam of ereatiwitty will be elaborratteed in the lastt section．
 not in the centre of the presemt confereme．．
 Experrimertal resecrehers fijnd it oftem impoossiblee then demedopp sufficient integratijwe understand ing of new resultss im thine conteal of these alreardyy known froom before and to imiterprettee theam fromm thi viewpoint of a fivem theory．Howeaven，eomprehensiwe expertt system will be able to speeifyy the contexturall meanimg of a partticulhar re sul甘．
Today，the moset usuah way to write a seientifficc paper wouldd be it use one of the many word proeeseors that are availiabllee om uhe（mr－ ket．In the future more speeifice softhware will offer intecacativi text pieeessing inehudings text moodules that eam be acesssedd like） questionnaife．They wilh produe stamdurardizzedd andy heme emparable researaln feports helping to buihd up huge and intermattionalli accessible knowledge bases．This way of publieatiom progessigg！ hownewerf，should not replace but suppert methodis used ait prossent． The essentiall e日mponeents ef a prograth metwork that eam meett th needs outlimneds above are＇knowlegge fepresentation＇and＇inff

 seientifice work，so a brieff discussiobn of them shoulldy empletil

太 FBON，19\＆3）：

1．Sensations

3．Sehemata（seripts，frammes）
4．Rules

[^5]One of the problleams of storiing imformation liees im the way kmowledge must be repremited to guaramtue a maximum of assoeiattijomss within amd betweem the differemit areas ainimg at the achieemememit of fisst and effective access.. Interdisciplimary researadh by cognitiiwe $p s y \in h \infty l l o c g i s t s$ amd imformatiom seientistis could, yet, helpp to eope witm this probllemm. Amother facet is the blimamess of today's eomputteris with regords ta semsatimomall knowledge as itt is comtinuously acquireed by humams.. This leads ta the so-calleedy "fraame problem", i.e.. the impposssitbillitty of eomputters to use conmom semse knowledge such as humam brains do. Contemporary experit systteems are not affectread by thinis prroblem beacalusce thregy arree desiigmead for
 a complex fiselldstusdtydintiont ot hethe wayss inn whichn mamen tryy tag get in
 Hownever, $i t$ would be a vain atteempt to try to teacelm computters what man eam alreaadly do. It would - om the contraryy - be more fruittfull to compose networks of human and mecthanical experrtise whiclm worlk together im a symbiotic way and where ecelm ealm da what they do best.

Nore tham witm knowledge representatiom, ome is meetiong difficultiiess whem it eomes ta underistaandiing the secomed essentiall eomponent, i.e.. imfereme.. Todays knowledge of the humam abiliittyy to make imferemes is stilll linited.. Simee the earllyy sixtizess the fielidy of theorrem proving by manchimes has beem widely exploread
 earriged out fairlly by computeris amd researirch has moved ta otimell
 (KYBURG, 1987)) or fuzzy logice KBANDLER \& KOHOUT, 1985)), many probleme remaim.. Qne of them is the "fraame probleam", i..e.. questiominijing imfereme fromm a lizmited number of premises without the use of eonmon semse knowledge, the lattere being ome of the humam tools ta whielm the seientistt may quite of ftem have ta talke reffugge to. Amother aspect is the faet that the proeess of seientiffice diseovery is not very oftem the produet of deductiom from weell-defindbedy premises. There is mueh imduetibe as well as imtuittivee reasonimg amd there afe eomplex approaches by means of triiall and error strattegises.. Finally, emootional, mootivatiomall amd personalittyy faetors must be takem into aceount. They lise exclusiwellyy behiind humam inferemes amd they may have great siomifficaance for immovation amd ereativiityy. But again it must be sttratteed that eompuiteris should not be desiggmeds as bad imitatioms of the humam mind. The advantage of eomputers 1 iess im the fact that they are free of prejudice; they are unbicseed amd they are not very liikellyy to get comfused (BAUNGART, 1985). Aboreowern, they have emougln eapacityy ta cope With 1 crege amournts of premises im a stiraighttfoanwardy way. These advantiges should be used extemsiwelyy to suppoit amd ta complete the aptittuxdes of the humam mind..

Some desideratia amd am example
Perfect seientificcexpert systeams (SES) should eooperate with the scientist at eaclin of the fiive sterps of work merntiomed above. To desiggm suem a systeam am episstemolloggy of seientiffice rescarcin would be a helpfull pierequisite. It would, thereffore, have to amswer the follbowiimes questioms:
(1)) Whhich specifica knowledge is needed ?
(8)) How is the 1 atterelir represemiteed ?
(3)) What are justiiffieed striructurress of imfereme from this kmova 1 edge?

Sueh am epistemmollogyy is not yet procurable. Houmexerr, a listt of desiread piropertices of SES will be imtmoduceed bellown. The fiirstt o these properties cam be reffernead to as "dynamic design". All re quired knowledge must be updated contimunousllyy amd thus became baekgroumd of a dymamic knowledge base. The secomath propertyy cam ealleed "cooperative design". Not omly ome simgle scientisst team, but many tams froam a mulltittude of univerrsitiieess anl coumtries shoulld work together builldiing a wide-ramgiing knowlbeldg base.. The thinrd propertty is "public accessibii Ity". As many sciean tibitss as possible should be able to use SES. The next three prob pertices are concermed with the questiom of knowledge reapreesutatr tiom. Reprresemtatiom must be standardized im order tه maki possiblle cooperrative desiogm amd public aceessibiliityy.. At the sami time it must be domain-specific im order ta minimize the loss o imformation eccused by the homogenous way of represemtation. Th siixtth propertyy cam be named "multiple area representation".. A merntiomed before, humam knowledge is sttoreed im four maim ways Successfull SES should at least imellude three of thneam: concepts an their rellattiooms, schemata, i..e.. groups of coheremt or cainocilib ellements amd rules.e This leads ta the sevemth propertyy: effficieipt SES must imellude justified rules of inferencen, both deductive an imductiwe, to exhaust the impllicatioms of available knowledge..

Some of these desiderattas are, at least, partlyy met by the expedir systerm SC merntiomed im Seetiom 1 (SCHULTER, KNOCH Sk MRALLEE, 1988) SC comsists of three subsystteams which will be shorthy describbeabl.

The firisit, THESAURRUSS, is am hierarchically sitmurethuread nettwork seientiffice concepts, logicallyy comnecteed ta eaclin other by the re 1 attionins 'browd term', 'narroow term' amd 'rellatteab tearm'.

The secmand subsystteam, FRAMES, is a nettworlk of scientiffiice conceept ecell of whielm is surfrodumbed by a firame of theoreticall amd empir eal informatimin concermiimg this particullar concept.. Im the frame centrall coneept is comnectead to other concepts im varioms therores tiicall amd emppirfieall ways. Each of these comnected concepts are re presemted in diffferremit SLOTS. A1ll imformatiom of one Slot
 LITHEERATHURE of GENERAL-COMMHENT). The essentiall imformatiom is n presemited in a largelly stamalardiizzed symitaza of a Facet calle ASSERTION-INFO. These sttandardiizaed formulas are calllead 'Assiè tioms'. They eonsist of a feew variablies connected ta eaclim otliner difffercemt fumetiomall phrases: VARI CAUSES VARE V VARI EXPLAK VARE \| GROUPI SHOW HIGHER VARI THAN GROUPE / VARI IS POSITIMEEL CORRELATED WITH VAR8 etc.. Each varitiable or groulp defimes a correet which, on the ome hamd, creattes a Frame amd, om the other hamd, a Slot in varioums other Frames. Thus itt was triead to desiiggn fepresentation structure that is comparrable ta the overlaapppinng at asseciatiive sememata im human memoory..
 consists of a number of rulles that should generate mew Assertiont hypotheses amd speculatioms on the basis of some or ally Assentioior sttonred in FRAMES. There are four types of rules: 1) Formulatity rules, whielm syttacticalllyy tramefformm given Assaertioms in order make thmem availlable to other rulles (e.g. IF CVAR IS POS CORRIGIO

TED MTH VARSJ THEN CWAR2 IS POS CORRELATED MITH VARII). 2)) Deductive Rules, whiclm are subjeet to the laws of elmssiicall logie, but they may produce virturali new imformatiom (e.g. IF CVAR1 EXPLAINS VARE3 AND IF CVARE EXPLAINS VAR33 THEN CVAR 1 EXPLAINS VAR31. 3)) Hypothetical-inductive rules, which generate conclusioms the trutth of whiclm is not guarantueed, evem though the premises were true.. These conclustioms are mamed 'Hyppottheesess' amd they are labeheed by
 dityy (e.g. IF CWAR1 IS POS CORRELATED MITH VARED AND IF CVARE IS POS CORRELATED MITH VAR3D THEN CVAARI IS PROBABLY POS CORRELATED MITH VAATB3B). A) Speculative-inductive rules, whicim generate conclusioms thatt are deriiwed from premises imehudiing ome Hypoothesis.. Agaim these conclusioms are of limitted validitty amd their lable is the qualifiicattion 'possibly' (e.g.t IF CVAR1 IS POS CORRELATED MITH VARED AND IF CVARE IS PROBABLY POS CORRELATED MITH VAR33 THEN CVARI IS POSS[FBLY POS CORRELATED WITH VARR3B).

SC is a systteam shell that cam be fillleal up witlm knowledge from variows areas amd whielm is going to meet most of the desideratia ex-
 quarnttificatiom for statisistiocall data amd the probleam of botlm exact amd ereatiwe rulles, however, are mot adaquatelly sollwed yet..

3. Edurcatiomall amd Sciemtifiic Comsequences

Scientifile expert systrems as discumsed by now are not predraminantlyy user-oriiemtted beeause they are primarillyy used by the desigmers themselves. If we do want to exploit the educatiomall potential of experit eystrems we must - soomer or later - tramoforiman them imiteo intehliiggemit tultoriing systems or computtent-based learmiing enviromments (YAZDANI LAMLE展, 1985). And if we could mamage to make universitty sttudents familicar with specializzed computer systems there will be a handful of positive eomsequences. Whith the help of ses noviees could be imitroobuced to the eoneeptuah nettworlk of a discipliime; they would become acquaimedt with bramb-rreew reserarcth resulte; they could fiond out about connectioms bettweem data timey would otherwise have learmed and stranred unielatteedt ta eaclim other; they would get to know ways of evidentiall reasoming and they could reerute hypotheses generaiteed by the system as topies for a master thesis or doctoral dissertattiom. But there are allsog doubts as to extremes of stuldyying with a computter. Dettailhed readimg of papers or books eould be substittuiteed by the mere sitmelk piliing of abstraets amd assertitioms; imstread of frollbowiing complex limes of argumerntatiom stuldents coulde simplyy ask the systemm about the probabbilittyy of am assertiiom; having hypotheses generatted could be prefered to the pereeiviing of the maturall envircomment; amd severe logiech imferemes eould harm the spiritt for imtuiltime amd ereative reasoming. By now, eomputteirs learin from being tolld amd humans leafh fromm experieme (YAZDANI \& LAMLI艮, 1985)) - maybe somin computterts will alsso learm from experiemce, but humans should not cease to do that..

The consequences of seientifiio expert systems for the eommurnity of scibence amd the researath proeess are diverse. Sciemtists will get
 puttingy in order the imformatiom ome has collectued.. There will be more time for the underetamdrimg of researach data, amd for the inventimin of theoreticall moodelle, as well as for the interpretaltiom of the newly acquired data. One of the essenticall prerequisitess will be to interest stuments of ether perisoms to eontimmouslyy up-
date the knowiledge base of the expert systteam.. Otherwise tiime willl be wasted without much bemefit for the ereatiom of new ideas.. One of the primary tasks will be to minimize the tiime that is required for the update of the knowledge base itselff. On the other handi only the updated systrem will guaramturee maximum effiiocaacy.
The commurnity of scieance may soom be faceed witlm the problem of a scientific Third World.. At the momeemt only feaw natioms lijke the USA; Japan, Frame or England represemit the Firsit Mborld, whereasi all other natioms cam be summed up in the Secomed Mborld. But foí
 natioms of the Secomd Mborld wilh be able to procure efficoijemt exj pert systteams, permaps evem by working together im fruittfiull coopl eratiom, wherreas the rest wiill soom become the Third wborid, atj off from the flloow of curremt imformatiom amd imhibitteed by oldd fastmiiomed amd slloww methods of researeh. Dn the other hamd, imitheri natiomall cooperatiom witlin consecutivelly imereased productivitty is weill withim the reach. But this leads ta a problleam for the researclim process itselff which will be mamed "scientific inflai tiomy.. The better the expert systeams become the more publication seientists will be able ta produce. But these publicationms will mainly represemt rewiews or pieccomeal research reports. This mel host of publicatioms will be fed back imita the expert system agaim and the ratte of imflattion will riisse morre amd moore, thu eausing a vicous eirelle. Therrefore the aiim must be to desiggn ex pert systrems that imerease quality imstreadd of merre quamtityy.. Thus SES should not be dedieatted blimadlyy to the generatiom of naj hypotheses amd topies, but they should be able to depict essentitit topics that are worthyy of being investiigattead..
4. Limits of Arrtificiall Intelliggeance: :

Some Philosophical Comssiderratioms

As to the power of imference the limits of computters are of phinosophieah rellewwine, sime they depend fullyy om the exteant knowledge amid the rules that researemers may accumulate. Expe systems will soom be able to handle a multituute of data amm th will extraet feleevamt impplieatioms and deriwe gemerralizatiome fr the latter. Altheugin the outcocme does not exceed the potentiiall the data amd rulles determined by the humam mimd itt is justififaibat to use the term 'iintelaliiggemt' for this process.. But as to question whether stattes of eonseiousmess eam be develloped im eompulter eysteem of that consciousmess is no more timam a commm sensiech word for a speciall kind of biomecharmical processes th are quite similiaf to those of future-gemeration computers seriobus doubts must be raiisech. One essentiall poimt is that imtic ligemt behaviour is only one component of the comppllexity of ment syeftems. Armother erueicill poimit is that it is possibliyy just amonis the most basie pirerequisitues of sucim a systterm. Evem im the rid eomplex way intelliggentt behaviour taught to computters is no m thein fule-ffolly powiins, determined by explieablie premises.. But wh sert of fulle do we follopow whem we fall in lowe with another par or whem we stropp earryiing out a tassk simply beeause we are not the modd for it amymore? And how should we prograam computens stom selviing a probleam whemever it does not "feel"u lilke continni ? Mbetivation, moed amd emotion are essentiall compoments of critan tiive behaviour.. And ereativitityy is as undetermimed as, for examp emootions are: botlin are tramsacemdiinge the systteem's priour progegamm (MOARESS fOHNSON, 1985). This unpredictaloility im humam thinther amd aetiingy eam be inluusttrateed by the follbowiing argumerntt. limgumge implies to subject oneself to some stamidards of sistreancy, thus definiing a form of perceptiobin amd commurnication
 JOHNSON, 1985). Compputers always use some kimd of restriictime lamguage; however, iff one does not presmppose that humam thiinkiing is sinply a biologiewh process im a strijettlyy defimed biollogieall language, some parts of conscious experime must be regardead as amorphous amd umrestrictued.. Such conscious staltes of, for example, daydreaming or imaghimative associatiing are very oftem firsste elemeontis of a ereatiive idec. To look at a probleam not only im the traditionmall and obvious way but, on the contrary, ta tramssceand common frames of perception amd thought amd ta consecultiwelly ereate a new perspective sems ta be am exclusivelly humam potemtial.
Neeverthelless, information seientistis amd cogmitive psychollogists should cooperate im order ta destigm systteams that are as creatiiwe as possible. The Psychologyy of prableam solwiimeg amed creatiiwitty may provide usefull imsights imito the proeesses that are the basis of human thinking. Exampples of suclm strrattegites are those of NEBER (1987)) amd PERKINS (1981). The former surveys 40 yearss off psychalogieal researelh and diseusses the probliems of instrwitiiom and preventiom im the fiielldt of probleam sollwiing.. PERKINS (1981)) wrote a wittyy boolk containimgs "talless" about amd rescearreln inttom humam creativity.
As far as selentiffic research requires ereatiwe, i..e.. umrestriictteab amd indeterminate ways of thiinlkiing computters may only be coworikents of human seientistts-. But they should become the best coworkerts we ever have had.
 productiom rulles im expert systtems.. Intermatiomall Jourmall of Man-Marcthíme Studies, 22/3, 347-355.0

BALINGART, M. (19855) D Dem Computer felm $1 t$ der "Hauswertstand".. ibfreport vom 18.Október 1985..

BI BEL, $\mathbb{N} .(1982)$ Dedulktiomsverfahrem. Im N..Bibell \& H.Sïedkmamm (Ed.): Proceedings der Friühjahrsschule Kürnestliiclhee Intellig gqearzz 1982. Factherrichte Informatilk 59, Sprimger:: Berr1inm, 99-140..

BI BEL, $\mathbb{N} .($ (1984)) Automattische Inferemz. Im I..Rettii et all. (Ed.): : Arrtificiiall Intellliggance - Eime Eimführuing. Leitffä̈̀ten der angewand tem Imformatilk, B.G.Teubmer:: Stuttgart, 145-167.

KHABRBGHHEE., Ir. Bayesiam amd non-Bayesiam evidentiall updatiing. Arttificiiall Intelliigence, $31 / 33,271-2944 .$.
 The Jourmall of Crreative Bethawior, 19/4, 241-2555..
 MLinnstiser.

PERKINS,D.N. (1981)) The mind's bestt work. Harrvard Umiiweersityy Press: Camblridge,Mass..

RATEEK, W. (1985) DQmänem der Künisstli lielmenn Intelliggearzz. Narchariclmituen für Donkumanation, 36/4-5, 210-2lli..
 Imfermizsyystrame als Hilfsmittell wissemscthafft 1 icher Lehre und Foriselmung;: Entwieklumg eimes Expertensystems. Berrichte aus dem Institult für psychologie der Karr1-Framzems-Umiversiitáit Graz, 1988/6..

SYDOW, H. (1982) Systteame der Künisstil liclmemn Intelliggeanz umd kognitiwe Psyehologie.. Zeitsethrift fiur Psychologie, 190/4, 392-4@4..

YAGGR,R.R.((119885)) Imfermece im a mulltivallueed logic systerm.. Intermatiocmall Jourmall of Marn-Marchime Studies, 23/h,, 27-45..

YAAZDANII,M, \& LAMLER,R.WN.(1986) Arrtificiall Intelliggeance and Educatiom: An Owerviiew.. Instructiiomall Seiemee, 14, 197-206.

A FIRST ORDER THEORY OF THE LEARNABLE AND KNOWLEDGE COMMUNICATION

A.BENGZḰr
Eōtvös Loraind Lwiversity, Computer Centre
Budapest

KKeywords. Macluiiie Learning, Symbolic Logic, Complexity Theory, Relational Datalbasess.

Abstract

Albstract. The ipuper is concerned with an extension of L.G. Valliant's approach to learning Boollean functions for learning finite models. A general leai'nability theorem is givem based on Kolmogorow's algorithmic information quantity. We describe a cooperatiive leaming wiith a special knowledge commmilication.

1. INTRODUCTION

The seminal work of L.G.Valiant (1984) inspired a series of papers treating the computational aspects of learning Boolean functions. In this paper we extend Waliant's theory from Boolean functions to a theoretical framework of learning finite models of a first order language. In doing so, we arrive to a problem similar to that of exttractiong information from a relational database. Then we can employ the perfonmance evaluation techniques of relational databases based on Kolmogorov's allponithmic information quantity. (A.Benczúr (1987)(1988)) As a starting point, consider the problem of learning Boolean functions. We can turn this into a problem off learming finite models over a two-element universe as follows. Let $f\left(f\left(\mathbf{p i}, \ldots, p_{n}\right)\right)$ be a Boolean function and $P\left(x i, \ldots, x_{n}\right)$ an arbitrary \bar{n}-place predicate symbol. We assign to f the following first order formula
where

$$
\tilde{\mathbf{B}}\left(\mathrm{x}_{\mathrm{i} j} \mathrm{i}_{1}, \ldots, x_{i_{n}}\right)= \begin{cases}\boldsymbol{P}\left(\left(x i_{1}, \ldots, x_{i}, i_{n}\right)\right) & \text { iff } / f\left(i_{1}, \ldots, i_{i}, i_{n}\right)=11 \\ \rightarrow \mathbb{P}\left(x \mathrm{x}_{1}, \ldots, \ldots, X_{i n} \mathbf{J}\right) & \text { iff } f\left(i_{1}, \ldots, i_{n}\right) \equiv 0\end{cases}
$$

and ATstands for conjunction and ranges over all the 2^{H} such assignments. Suppose now that a model M statisfies $3(x a, x i)$ (1) $6 x, x i)$. Then, unless if is a constant function, the universe \mathbb{U} of M contains two different elements serving as " 0 " and "T" in the case of the Boolean function f ". The formulas ϕ records completely the behaviour of P on these two elements:

This property of $\phi_{j}\left({ }^{2}\left(\gamma \rho_{2 \times 1}\right)\right.$ can be extended to the case when we have mere than 2 waniables. These formulas will be called diagram formulas since they ceme from the method of diagrams of model theory:

The goal of learning a finite model M of a language L over a universe U is to deduce a program that recognizes whether a formula $\psi\left(x_{1}, \ldots, x_{m}\right)$ of L with free variables a_{1}, \ldots, x_{n} is existentially satisfiable in M or not. The diagram formula of U U shows that it is possible in a finite amount of time: one possible way of learning M is to recognize its diagram formula. To formalize the learning mashine we suppose, that the model M is inside a black box and an ORACLE can answer questions which are sentences from L. The learning machine derives diagram formulas statisfiable in M.

To give a possibility to measure the work of the ORACLE, we can suppose that the model M is represented in the black box as a relational database. Then the performance evaluation model of relational databases introduced in Benccưr (1987), (1988) can be applied.

The main idea of the above papers is to measure the information quantity of relational databases by Kolmogorov's algorithmic information quantity. The same measure can be used for diagram formulas and finite models as well. By the help of this measure we can formalize the intuitively expectable theorem of learnability: the lover bound of the algorithmic cost of learning finite models is proportional to the algorithmic information quantity of the models.

A class of finite models is learnable in the sense of Valiant's learnability if tlicre exists a learning algorithm running in time polynomial in the arities of the predicates to be learnt.

Finding learnable models is a central problem of the theory of learnable. Complex models are practically not learnable, only simple submodels of them can be olficiently learnt. These submodels can serve as a reference knowledge for subsequent, partial lear ning procedure or in cooperative learning.

2. DIAGRAM FORMULAS

Let L be a first order language with predicate symbols $\mathrm{Pi}_{\mathrm{j}}, \ldots, P_{N}$, and without constant, function symbols and equality relation. in is a finite and unknown universe to be learnt using the language L. The interpretation of L in U constitutes a model M. The goal of the learning procedure is to construct an algorithm, that can evaluate a sentence ϕ of L according to the interpretation of $\$$ in M.

A substep, or an intermediate goal in the learning process is to recognize a diagram formula, satisfiable in M.

Definition 1.

A diagram formula of the language L with the n variables $x \mathrm{i}_{1}, \ldots, \mathrm{x}_{n}$ is a conjunction of atomic expression $\tilde{P}_{i}\left(\left\{\left(2 V_{1} i_{v} \ldots, v_{k}\right)\right.\right.$) for all possible assignment
 choosen arbitrarily in each aissigument. \square
 diagram formulas is borrowed from the paper J.A.Makowsky and M.Y.Vardi (1986),
where they used the method of diagrams see in Chang and Keisler (1977) and McKinsey (1943) to prove characterization of relational dependencies.

A diagram formula $\Delta\left(x i, \ldots, x_{n, n}\right)$ determines a unique interpretation of L over

In the opposite direction, for every finite model M there exists a (minimal) diagram formula Δ_{m}, such that $M_{\text {anh }}$ is a homomorphic image of M.. The method of diagrams of model theory is based on the theorem, that a model M^{\prime} can be homomorphically embedded into a model M iff the diagram formula of M^{\prime} is satisfiable in M.

This theorem says, that if a diagram formula $\mathbf{A}\left(\mathrm{aii}_{1}, \ldots,, \mathrm{r}_{n 0}\right)$ is found satisfiable in M, then a fully determined submodel of M is learned, and we can observe n distinguishable elements of \boldsymbol{U} in the roles of $\mathbf{x} q, \ldots, x_{n}$.

3. LEARNING THEORY OF DIAGRAM FORMULLAS

The straightforward and simplest way of learning a satisfiable diagram formula $\Delta\left(x i, \ldots, x ; r_{n}\right)$) in a model M is to systematically ask the ORACLE the satisfiability of (atomic formulas with or without negation) for the combinations of the k previously checked atomic sentences.

At the end of this process we get for an $\boldsymbol{Z}_{\text {Fiplace }}$ predicate a k^{n} long sequence of yes or no values. So we can associate a binary sequence to each predicate symbol in Δ. Concatenating these sequences and adding a prefix encoding the number of variables, p redicate names and the arities of the predicates, we assign a unique binary sequence to each diagram formula. This special code is the same as the canorical form of the relational databases introduced in Benczúr (1987), (1988) and we call it the canonical form of diagram formulas.

This canonical form is suitable the application of Kolmogorov's algorithmic information quantity. (See Kolmogorov (1965), Kolmogorov and Uspensky (1987),

Definition 2.:

Let Jýg be an optimal partial recursive function* mapping finite binary words to finite binary words, such that for every partial recursive function K
for every $x_{\text {, }}$, and the constant C_{k} depends only on K.. The algorithmic information quantity of a finite binary word x is

$$
I(x)=\min _{f \in \mathcal{G}(y) \geq x}|y| .0
$$

The Kolmogorow's information quantity of a diagram formula $\mathbf{\Delta}$ is the algorithmic information quantity of its canonical form, and we denote it by $\llbracket((\mathbb{A}))$.

[^6]From the definition of $I(\Omega)$) it follows.

Theorem 1.

Let G be an algorithm recognizing a recursive class of finite models asking the ORACLE $T(\Delta)$) times to recognize A, where A is the diagram formula of the model to be recognized. Then there exists a constant C_{G} such that $I(A)) \leq T(A))+C_{G} . \Phi$

This theorem neglects the algorithmic cost of the ORACLE investigating the model, or what is the same we charge a unit cost for an oracle call. The class of sentences that can be asked are described by the learning protocol. Different learning protocols affect only the cost of a step in the learning process.

From Kolmogorov's theorems for the estimation of $I(x c)$ (see Zvonkin and Levin (1970) theorem 1.3) the following can be aesily proved:

Theorem 2:

Let D be a recursive set of diagram formulas generated by the partial recursive function $g(n, k)$ of two variables. Suppose, that $\mathbf{A}_{k}^{v}=\{\mathbf{A}:(3 i)(g(k, i)=\mathbf{A})\}$ is finite for $k=1,2, \ldots$ Then the majority of D_{k} cannot be learned faster

Corollary 1. Let the parameter n be an encoding of the following size paraméteres of the models: k the cardinality of the universe \mathcal{U}, N the number of the predicates and $\boldsymbol{2 r i}, \ldots, n \geqslant y$ are the arities of the predicates. So, if a set D of diagramformulas is learnable in time polynomial in the paraméteres, then $\left|\mathbb{D}_{n}\right| \leq 2^{P(n)}$; where $P(n)$ is a polynomial of the parameters. Since the total number of the models of this size is $2 \sum k^{n}$, learnable classes must contain only very few elements. But it is only a necessery condition, the elements of a learnable class must be simple as well according to theorem 1 .

Theorem 2. and the corollary do not contradict to the existence of a polynomial time algorithm in Valiant (1984) for recognizing disjunctive normal form expressions. Indeed, Valiant's algorithm runs in polynomial time in the degree of the DNF. But the typic al degree of a DNF with n variables is near to $\bar{\pi} \approx^{\wedge} 2^{n}$, This estimation can be proved from Valiant's algorithm and theorem 2.

4. COOPERATIVE LEARNING

The results of the previous chapter gives a stress to Valiant's opinion in Valiant (1984). "If the class of learnable concepts is as severaly limited as suggested by our results then it would follow that the only way of teaching more complicated concepts is to bui Id them up from such simple ones. Thus a good teacher would have to identify, name and sequence these intermediate concepts in the manner of a luogrammer. The results of learnability theory would then indicate the maximum granularity of the single concept s that can be acquired without programming,"

In this part we show a step in this direction. Our proposal is to use during the process of incomplete learning simple, learnable diagram formulas,

Finding a small submodel in a larger model might be simpler than learning it as a model.

When a satisfiable diagram formula is learnt it can be used unambigously in subsequent learning or communication. This is because every subset of the universe of the model satisfying it shows a unique behaviour for each of the observers. New observations can be related to diagram formulas so that some of the existentially quantified variables are bound to diagram formulas too.

The roles of variables in diagram-formulas can be identified by their index. Another way to reference these roles in the use of a symbolic first order language L_{a}, consisting of the predicate symbols used in Δ and the equality relation. The interpretation of L_{a} is fixed over the universe $X=\left\{x i, \ldots, a_{n}\right\}$ of the variables by the diagram formula. This means that an assignment to a predicate P is true if the same atomic sentence is not negated in A. The language L_{a} can be used to communicate knowledge about subssystems satisflging A. Two observers or learners can exchange knowledge in a shorter form, or using L_{a} they can describe the roles of some variables in a formula of L.

The goals of a learning process can be not only submodels but derived, simpler models as well. We call a new 2 i -place predicate P_{ψ} a derived predicate associated to the formula $\psi\left(y_{1}, \ldots, \mathbf{j} / \mathbf{n}\right) \in \boldsymbol{G}>\boldsymbol{i f} \boldsymbol{y} \boldsymbol{i}>\cdots \cdots>y_{n}$ are the free variables of ψ and for every
 diagram formulas can be easily extended for derived predicates in the following way:

Definition 3:

A L-wariable diagram formula associated to $i p$ is defined by

$$
\Delta^{\psi}\left(x_{1}, \ldots, x_{k}\right)=\prod_{\substack{\mathbf{K i n}_{i} \\ \Phi=\overline{1}_{2}, \ldots, \ldots, n}} \tilde{\psi}\left(x_{i_{1}}, \ldots, x_{i_{n}}\right),
$$

where $\dot{\bar{p}}$ is either $i p$ or -iip. \square
A derived predicate P_{k}, is learnt in a model M of an izerlement universe if we have found an existentially satisfiable n-variable derived diagram formula $A^{\text {}}$ that is $3\left(a_{i}, i, \ldots, x_{n}\right)\left(\Delta^{\ln }\left(\left(2 x_{1}, \ldots, x_{n}\right)\right)\right)$ is true in M.. A derived model M^{\prime} of the model M is given by a system of derived predicates $P^{d^{\prime}},, \because \cdot, P^{4_{k}}$ 四The model M^{\prime} can be inwestigated by the derived language L^{\prime} consisting of the derived predicate symbols. The diagram formula of M^{\prime} in the language L has the form

Using this notation we can describe a formal model of cooperative learning. Let Mi, $\mathrm{IN}_{2}, \mathrm{M} 3$ be derived models of a model M , given by the three systems of formulas
 L_{1}, L_{i} and L_{3}. Two observers A and D are learning models $M i$ and M_{2} respectively.

Both of them know the derivation formulas of their own model and that of the model M 3. Observer A uses the language $L i$ and B uses $L k$. They can only communicate existential sentences of $L 3$ proved to be true in $M 3$. The goal of the cooperative learning of A and B is to learn separately model $M i$ and $M z$ and learn together model M3. Knowledge of M g helps in learning model $M i$ and $M 2$ as well. Obviously, the kind of models and the extent they could be learnt depends on the systems of the derivation formulas. Quantitative analysis of the learning process is likely to be based on the concepts and theory of Kolmogorow's conditional infomation quantity.

Acknowledgement.

I am gratiful to Lajos Ronyai for calling my attention to Valiamt's paper and his help piovided in the preparation of the paper.

REFERENCES

A. Benczur (1987). "hiformation measmement in relational databzses" Lecture Notes in Computer Science, 305 proc. of 1st Symposium on Mathematical Fundiunentals of Databjases Systems (1987), 1-10 Spiingeri=Verlag, 1988
A. Benezun' (1988). "Performanee evalluation model of databose systems based on Kohnogorov"s algorithmic hiformation quantity." (In Himgailian) Thesis for the degree of Doctor of Sclence, 1988
C.C. Chang, J.H. Keisler (1977). "Model theory". North-Helland P.L. 1977
A.N. Kolmogorov (1965). "Tree approaches to define the coneept of information quantity" (in" Russian) Problems of Information Transmission, 1965,1.1. 3=11. Meskow
A.N. Kohnogorov, V.A. Upensky, (1987). "Algorithms and randommess." (In Russian) Probability Theory and its Applications, XXXII,3.1987. 425-455. Moskow
J.A. Makowsky, M.Y. Vardi (1986). "On the expressive power of data dependeneies". Acta Informatica 23, 231-244 (1986)
J.C.C. Me Kinsey (1943). "The decision problem for some classes of sentenees without quantifiers." J.Symb.Logic 8, 61-76 (1943)
L.G. Valliant (1984). "A theory of the leainable" Comm. ACM, 27(11), 1984. 1134-42
A.K. Zvonkin, L.A. Levin (1970). "Complexity of finite objects and foimdation of the coneept of infommation and randomness by the help of the theory of adgoritluns." (in Russian) Uspechi Mat.Nauk, 1970.XXV. 85-127.Moskow

HUHGARZAN AND GERMAN SPEAKING COMPUTERS FOR THE BLIND

A. Arattar, T. Vaspörii
Central Research Institute for Physics, Hungarian Academy of Sciencess
G. Olaszy
Linguistic Instatute of the Hungarian Academy of Scienees

Abstract

The authors discuss possible methods ————— displaying computer information for the Blimal.. For many cases speech output is the most efficient method for working by the Blinad.. The Hungarian made BraiLab talking computer family is introduced in the paper.. The BraiLab is the school computer of the Hungarian Society for the Blind and the Hungarian Primary School for the Blimed. On the basis of our Hungarian experiences we developed a German text-to-speech system and a first variant of the German speaking Braillath.

Keywordisc.. Aid for the Blindil, Speech Synthettizzüncy, Human Engineming, Educattiom.

1. INTRODUCTION

The authors discusse possible methods displaying computer information for the Bliumod. The cheapest method is the speech synthesiizuing.. For many cases speech output is the most effective method for wbadkimg by the Blimel.. The Hungarian made BraiLab talking computer family is introducesch.. The Brailab is the school computer of the Hungarian Society for the Blind and the Hungarian Primary School for the Blimad.. There is more than two year practice of using these about 100 talking BASIC computterss.. On the bases of our Hungarian experiences we developed a German text-to-speech system and a first variant of the German speaking Braillaba.

2. DISBLAYまれ

There are several microcomputer based aids which are available for blind people; these are very usefull for handicapped programmerrs, lawyers, teacherss, philologists and other specialists. The aids which support tactile interfaces generally fall imto one of two typess.

The first type is the opticall to tactile converterr. With this device a reading speed 90 to 100 vfords/min can be achived. The advantage of this device is that any inkprinted material is readable by the blind user.

The other kind of tactile interface is Braillleer. The reading speed is faster ((about 250 to 270 words $/ / / \mathrm{mim}$)).

Both types are more or less internattiomall, though the Braille coding has some language specifices.. Tactile aids are very expensive.

A new and promising area of development for aids for the visually handicapped is using computer synthesized voice outputt. Only a text-to-speech based system can be taken in considerattiom. The fix vocabulary system can be used only very tighttly.

3. SPEECH OUTPUT SYSTEMS DEVELOPEMENT

Text=t θ-speech systems are language speciffice. A Hungariam speech system whas not available on the markett. Research was carried out in the field of formant analysis and synthesiss fof the Hungarian and German languages by the Linguistiic Institute of the Hungarian Academy of Sciences. (1)) (3)) Fimally text=tospeech system was developed in the Centrail Researgh Institute for Physics of the same Academy.. On the basis of these resulte project was initialized to build a talking microcomputer for the Blimd.

In the development of the projectu, many problems which could only have been resolved with semantic analysis were simplified with an intermediate Braille coding system.

An MPA=8090 foxmant synthesiger was used in the projectt. This is a very 1ow cost integrated gifcuit capable of producing any language. Initially the ASCII-to-speech conyerter progiam whas written in macro assembler language for an untel 8985 based minfocompuiter. After that a "speech paxameterg' eqiting system whas written using the high levell programming lanatage C : The speech parametern could be loaded inte the development miterocomputer in the proper
 particulafy helpful woxking system which helped us to
develope the project more quickly.
The German text-to-speech program was produced using the Hungarian developement systerm.

A blind research worker took part in the devellopmentt. For this reason an SDK-85 was completed with a fixed English vocabulary using the Digitalker synthesizzerr.. She could program the MEA-8000 chip with the help of Digitallkerr.

4. THE BRAILAB TALKING COMPUTERS

A talking personal microcomputer was built using the text-to-speech system. The goall of the project was to develop a very low cost personal microcomputer for Hungarian blind peopie. The imput/output system of the $z 80$ based microcomputer was modified so that even the screen editing system can be used by visually handicapped peopile.. The following talking programs can be used on the smaller version of the BraiLab computer:: the talking BASIC and the talking Assembler with Disassembler and monittom.. 48 Kbyte free memory is available for programming.. This smaller version is usefull for teaching purposess.

The advanced version of talking personall microcomputer developed for the Blind is called BraiLab Plus... This machine is supplied with a talking version of $C P / M$ compatible operating system. A talking text editor and a talking data base system is ready to use. The BraiLab Plus is usefull for vborkïng purposes.. It is supplied with 386 Kbyte floppy drive, 64 Kbyte RAM memoryy, 186 Kbyte built in RAM floppyy, serial ((RS232C)) and parallel CENTRONICS interfacess.. The speech sinthetyzer is integrated into the computter.. Both versions are transporttatbles.

Only the BraiLab Plus version has been developed for German language because the German text-to-speech system is much larger than the Hungarian one.

The Hungarian Academic of Sciences-Soros Foundation finances the developement of a reading machine for the Blimdr.. An experimental version the BraiLab already reads inkprinted pages with the help of the character recognition system of Computer Research Institulte.

An aid for the Blind must serve rehabilitation goals. It means that blind people have to be able to work independently as far as possiiblee. The productivity of their work must be near to the sighted persmsi" one.

Using a reasonable tempo of voice outputt, a user can achieve about 320 to 350 words $/ \mathrm{min}$ reading speedi, which is faster than using Braillee. That is why the speech output can be used more effectively in some cases than Braillles. Although the BraiLab is able to sing, Braille music notations can be mead faster with tactile method of course.

Most of the people who lost their sight as an adult can read Braille very slow/ly. Their integration into the society can be resolved easier v/ith computer speech outpratt..

The Brailab can be used rapidly because blind people do not need to switch off-line for reading the screen of the computer. During text editimot, echoing functions are in operatiom.. At the end of each line when Carriage Return is pressed the computer reads out the whole line as connected text. Numerals at this point are not read character-bycharacter but as wholes (e.g.. thirty-nine rather than threes, nine) , The echoing of characterss; words and lines are performed automatically during typing and edituing..

The computer is able to speak as soon as it is switched on.. All the messages and error messages besides appearing on the screen can be heard by the Blinch. The speed of the speech can be changed from normal to double or hallf.. The speech output can be interrupted very simpily.

The BraiLabs have a video output connectorr.. A standard monitor can be connected for visualising the 24 lines by 80 coloumns for sighted peoplle. This is for helping on the integration of the Blind. They can cowork with sighted persons.

6. EXPERIENCES WITH BRAIIABS

In the Hungarian Society for the Blind several fundamentrall courses of computer technice were oxganized for beginerss. About 40 people finished these sounges;. The Userss' Manuri fof Byailab has been published on cassette tape and in Brasille print as well. ((2))
 ailmost every subject whm they use Braitab as an aid. one of the special features of Bxathab is that it can also sings. Te make the computer sing, the user has to specify the gernect
whythm and the correct sequence of tone. The meibdjily has to be given in relative sol-fa letterss, accordind to zoltan

7. CONCLUSIONS

There are two types of computer interface available for the Blind. The first is a tactile type, and the other is based on voice output.. Tactile interfaces are more or less intermationall, whereas the synthesized voice systems are language specific. A Hungarian-speaking computer called BraiLab is used widely in schools and the Hungarian Society for the Blind. Some special human engineering problems were resolved im the BraiLab computerr..

Voice synthesis is a very promising way of creating aids for the Blind. Talking microcomputers are low cost devices which can be used wiidelly in education and in the work of visually handicapped people. In the text processing fieldd, such talking systems can be used at least as well as their tactile counterparts if the human engineering problems are resolved properly.

References

((1) Kiss G. -Olaszy G. An Interactive Speech Synthesizing System w/ith Computer and OVE III. Synthesizer MFF 10. 1982, 21-46. Linguistic Institute of HAS.
((2) Arató A.-Vaspট̈ri T, Guide to Using BraiLab's Talking BASIC. VGYOSZ 1985. Hungarian Society forthe Blind
((3) Bolla K. -Valaczkai L, The articulatory and acoustic features of German speech sounds. Synthesizer MFF 16. 1986. Linguistic Institute of HAS.

Budapest 8-aug-1988
, <í.swiíss'^/<<? 3 Í《y:w^íKa
脬', Av

GRAPHICS AND DATABASES

$r A$ v. -.Win

d■■'品
$\cdot \rightarrow, \frac{n_{r n}}{n}$
s.

Towards a simple yet expressive picture description language

W.D. Fellner, J.K. Stigerer
IIG, Institutes for Information Processing Graz,
Graz University of Technology and
Austrian Computer Society (OCG)

Abstract

Integration of geometric data into current availibble relational data base systems has been of major research interest in the last few years. Various solutions to this problem have been presented including extensions at the fromt-end, designing application= independent kernel systems and/or changes at the conceptued level.

In this approach we restrict ourselves to two-dimensional geometric data stored in a standard file format (CGM). Within this enviromment we concentrate on the graphical data trying to find a relational fkont-end formailism for a simple graphical description. This leads us to the picture query language DTC based on relational-ealeulus which can be easily extended for handling of non-graphical data.

FIC is not primarily intended for user-interaction and could best be used as a subsystem within a device- and application-independemt graphies system, It ean be seen as a gemeralized pick-finmction supporting graphiced retrieval and maidpulation eperations. As basic compoments of a DIC predicate the set of graphical primitives and their attributes - maybe hierarchicsilly nested and in combination with graphical variables - can be used in a simple yet expressíve way.

Keywords: non-standard databases, query languages, graphicad databases, CGM, non-procedured langarages, RIC

1 Introduction

1 Introduction

Search and replace functions in non-grapliitesd applications like text editors and relational data base systems sire standard operations since quite a long time. They have undergone significant changes conceptually, in style aimd functionality within this period startimg with very simple and limited features, e.g. a few special characters like dorit eafres and wild corrds, to end up with powerful and convenient laimguages or language fragments (regular expressions, various query languages based on relational calculus or relational algebra).

However, in graphical systems the scope of a search function, ceilled the priekfunction, is mostly limited to the current picture within the edit process. In recent time more sophisticated graphical systems, médnly CAD applications, geographical information systems, chip design layout systems etc.., have increased the functionality amd allow restricted graphical retrieval over a large set of files or graphical libreiries. Although there are big differences between them at the user interface (relational front-ends, mostly SQL compatible [$[8,1,25]$, applieation specific forms, query by exaimple, etc.) the bulk of these so-called non-standard datta base applications [13] uses the same approwch: the graphical query statements are used as input for a treinsfomation function which maps the geometric query to the underlying conventional (non-graphical) relational data base system. Sometimes this is a very crude process which does not yield best performamce [12]. Therefore research efflorts try to overcome the shortcomings of the relational model with respect to graphics and/or special applications. This is done by proposing extensions [20,22,9] or by designing more general models [5,19].

In this paper we present a simple yet very powerful aind expressive picture description language which can be used for efficient graphical retrieval and manipulation. It can be seen as a generalized pick function and is designed to work within a special environment. So we first concemtrate on the basic assumptions and constraints. Then we present the key features of the query language $D F C$: the basic geometric data types, syntactic structure aind semantics of $D E C$ predicates aind the variable concept.

2 Basic Assumptions and Constraints

In the following we restrict ourselves to two dimensions and therefore we coll the objects, we are interested in, pictures and not graplmics deliberatelly. A picture is composed of n geometric objects $\mathrm{O}_{\mathrm{i}}, \mathrm{O} \% \mathrm{O}_{4} * \cdot{ }_{P} \mathrm{O}_{n}$ which are stored in a standard file format. In the display process they are interpreted sequentially. Hence we can speak of a time axis t

2 Basic Assumptions and Constraints

((order of display) and of n independent layers of a picture.

$O i$	02	\cdots	O_{n-n}	O_{n}

\longrightarrow order of display

There are two types of geometric objects:

- primitives; e.g. circle, rectangle, line, polygon etc. The set of available primitiines is defimed by the graphics standard $[15,16,17,18]$ used by the application.
- pictures; an object in a picture may be another picture within the database. We call this a subpicture. A subpicture can be composed of subpictures itselif.

This implies a structure of arbitrary complexity, however, recursion is not allowed. This structure can be implemented by some sort of USES/USEDIN lists associated with every picture. A typical example is a library including standardized pictorial units which are used - together with primitives - to compose new pictures.

The basic graphies standard used in this paper is CGM - Computer Graplices Metafitle [117]. CGM became ISO standard in 1987 and provides a means for the exehange of graphical infonmation [14]. With its advent the computer graphies industry for thie first time has a wersatile and application-independent standard for the capture, bransfer and archiwing of multiple, device-imdependent picture definitions. An extension to it = CGEM - will enable GKS-applications [15] to store pietures in CGM-format and is eurrently in preparation [118].

The question, which layer of presentation the seareh and replace function precess should operate on, is of principal importanee and has major influence for the resulting query language. A picture can exist in various different formats:
level 0: device independent format on backeround storage. Within the context of this paper it is the CGM format (in CGM coding can be done in one of three equivalent encodings: binairy encoding, character encoding, and cleartext encoding):
level i : intermediate formats within the graphics editer using internal data structures.

3 The Query Language DIC

level n : device dependent level: e.g. a raster graphics display. The picture is deffed as an array of pixels with different colour and brightmess.

In order to achieve general applicability and to avoid problems of portability it is absolutely necessary to keep away from device and application dependemcies. Thenefore the proposed query lainguage $\boldsymbol{V I C}$ operates on level 0 and is an object-oriented aind mot a pixecloriented query language. Pixel-oriented languages, better known as innage pmocessing lonngudges (IPL) [3] within the area of pattern matcthimg, operate on layer m. EPL's budld the main stream of research activity and many of them are currently in use in various applications (medicine, mining, $\cdot \bullet \cdot$) $[2,23]$.

On the other hand there are only a few publications concerning object-oriented nethiieval languages [4]. The basic units of an object-oriented query lamguage are the geometric objects as well as geometric operators and functioms which can be used to compore or transform objects.

3 The Query Language DTC

3.1 General Overview

DFC is a non-procedural pieture query language encouraging thonough optimizatioms [7] by the system. Its synteiz is keyword-oriented and very similar to (the quasi-standardl)) SQL. It concentrates on 'what' has to be found rather than 'how' the information hass to be searched for. DTC can be used easily within an imperative host lamguage. Thenefione we can identify two system parts:

- precomptleri Embedded DTC statements within a host language like PASCAL aire trianformed by the precompiler into calls compatible to the runtine modul DZX, Within predicates constants and variables can be used. A lot of thme consuming worlk can be done during parsing (ehotee of data aceess path, opthmizations, bindihoss, ...). Furthermore, during execution it is possible to assign the results of blC statumemts to varitables.
- runtime system DTX: DYX is net a general intarpretar. From a library DTX routher afe linked to the cuffent application.
In $\boldsymbol{D F C}$ there dire two types of statements:
- declairatives declariative statements serve two puifposes: the specification of variables and the definition of contrel pafaneters controlitig the seaflil precess.

- executable; this type of statement immediately provides a result, e.g. the GET statement searches for the picture(s) matching its predicate. Besides the GET statement there are some manipulation statements for update operations and some "cursor" statements for the usage within a host language (thiis corresponds to the cursor-concept of convemtional relational data base systems).

3.2 Structure of $\mathcal{A I C}$ Statements

Each retrieval statement traversing the underlying picture data base calculates a result set of n matching pictures, $n \geq 0$. The geometric characteristics of the determined pictures are defimed by the predicate. A predicate is a boolean expression of arbitrary complexity which has to evaluate 'true' for a picture to be included into the result set.. A predicate is composed of tokens which are combined according to certain combination rules (see table 1 for unary and binary operators). A token has the following structunce;
(objid, [attiributess])
or:

> ([乕bjuid], attrilbutes)

The brackets []] denote optional existence, () are used as delimiters.

The finst parameter objid is the object identifier and denotes one of three geometric types, OBJ, MAC, and PIC, respectively:

- primitive: (type OBJ) the set of primitives is defined by the underlying graphiics standard, e.g.: CIR, REC, ARC, POL, LIN, ...
- macro: (type MAC) elements of a picture may be combined to define a part of the picture: a maero. Essentially, every sequence of tokens defines a maero, i.e. the identification of pietures is done by identification of mactos.
- picture: (type PIC) each CGM file may hold n pictures, $n \geq 1$. A pietme with an empty USES list is entirely made up of primitives, otherwise the are refence to sulbpictures. A picture with a non-empty USEDIN list is referenced as a subpicture clsewhere.

Macro and picture are composite types and made up of primitives, macres, and/ar pictures. This means that through a macer of picture identifief a series of tokens is referenced implicitly. The nesting of tokens can be done explicithy, too. Therefore the parameter obbjid of a token can be an arbitrafy series of tokens itself.

$$
\langle\langle\ldots\rangle\langle(\ldots\rangle \ldots\langle\ldots\rangle, \ldots \text { atbributes.... }\rangle
$$

The evalluation rules for such complex tokens aine treated in detail in［24］．

$\left\langle B_{i}\right\rangle\langle n, m\}$	n to m occurrences of object $E, n \leq m$ and $n, m \in$ \mathbb{N}_{a} ．Instead of \boldsymbol{n} and \boldsymbol{m} the＊may be used（see next lines）．
	at least two occurrences of Ei－
（Ei）$\{$ 草，5\}	at most five occurrences of Ei．
$\left\langle E_{1}\right\rangle *$	axthititrary number of occurrences of object \boldsymbol{E}_{1} ．
$\langle\operatorname{di} i\rangle \neq$	at least one occurence of $E i$ ．$\{(\{E x)+\Leftrightarrow(\pm 2 i)\{1, *\}$ （ E_{1} ））
（哣） 3^{3}	exactly three occurrences of E（equivalent to： （本））（ $3,3,3\}$ ）
$\left\langle E_{1}\right\rangle \mathbf{0}$	negatiom：the object E must not be ain element within the picture
$\left(\mathbf{E}_{1}\right) \text { ? }$	optiom： 0 or 1 occurremces of Eh；（eqmivedent to： $\left.\left\langle E_{1}\right\rangle\{*, 1\}\right)$
（E） $\mathrm{E}_{\text {）}}$ ！ 3	complement：the number of occurremeses $\dot{\theta} \dot{E} E x$ nust not be equal 3
（ Bi_{i} ）$\left\langle{ }_{2}\right\rangle$	existemce of the objects E and \boldsymbol{E}_{2}（at least one oc－ currence each）．The order of Ex and E． 2 within the picture（with regard to time axis t）is of impor－ tance．
$\left\langle E_{1}\right\rangle^{\wedge}\left\langle E_{2}\right\rangle$	sequence：sequential order（with regard to time sixis 1）of Ex and E2（＇AND＇is equikzadent to＂）．
	alternatioive：inclusive or（＇OR＇is equivalent to（1）．
$(E) \text { XOR }\left(E_{2}\right)$	alternativive：exelusive or
$(\langle\text { 既 }\rangle)$	grouping of tokers

Table 1：woren operaturs
 tributes，can be seen as an operator upon the object（s）designated by the objecet jidendiffiar

3 The Query Language DTC

objid. However, we will take a more conventional view, treating them as additional conditions that have to be fulfilled by the object(s). Those aspects which are of no importance for the user can be omitted and are treated as don't cares. Attributes may be categorized within three classes:

- shape oriented: atuributes defining line type, brushing, coloniz, interior style, ...
- position oriented: atuributbes defining the position of objects within the pleture
- relational atturifbutitess: this type of attuibute is particularly of interest for retuieval purposes. Attributes of this class enable the user to define complex geometric relations between picture elements in a natural way (relative position of an object with respect to other objects, an object hides (or is hidden by) other objects, an object intersects other objects, ...)

A few examples may illustrate the features presented so far.

1

In $\triangle \mathbb{L C}$ it is possible to state the exact position of objects by specifying the definition points. Above the postfix 5 establishes that pictures including lines, that have a;y-values differing ± 5 units are still included into the result set. However, this way to define a position will rather be the exceptional case because of being too detailled.

GET NHES FROM PICTURES(1...110) WHEE
 (CIR, AREA $=$ RIEC($\left.\left(2 a_{3}, 1, y_{i}, x_{2}, y_{2}\right)\right)$ SORT ASC ON DATIE;

This token defines circles, that are fully contalined within the surroumding recteingle ($x_{1}, y_{1}, x_{2}, y_{2}$), i-e. the result of the above query statement are the ten oldest pictures that have at least one cirele in the specified area. It is possible to define more than one surrounding area and combine them via set operators.

```
e.g.: (LINN, AREA s REC( \cdotsa ) OR REC( Ma ))
```

GET ALL PICTURES WHERE
$\langle M 1 A R, \operatorname{MTYPEOX}[33,14], \operatorname{MCOLOR}=[* 9], \operatorname{MSIZE}<(5)\rangle\{*, 5\} ;$

The above token defines polymarkers of special type (not equal to 1 or 3), special colour (not colour 9) and special size (less than 5). The query finds all pletures containing at most 5 of these special polymarkers.

GET ALL PICCURES MAERE
(@BJ, COLOR=red, INTERSECT ((CIR, COLOR=blue) 1)) $\{(*, 10\} ;$

3 The Query Language NTC

In the above token a relational attribute INTERSECT is used. It defines that at most ten arbitrary red-coloured primitives (OBJ) that intersect exactly one blue circle have to be found in a picture to be included into the result.

Prom the first picture that fits the predicate oidy the elements stated in the predicate are taken (all green elements that are fully contained in the rectangular area). Instead of the usual WHERE-clause the above RESTRICT-clause provides a projection mechanism.

The resulting pictures comtain at least one rectangle that does not intersect any spline (at least one has to exist).

3.3 Variables in $N T C$

Until so far the presented pieture selection capabilities of $D \mathbb{L} C$ correspond to the power of regular expressions. The postfix of a token allows the user to define the number of pictume elements and relate them with binary operators and/or relational aturitbutitess. However, to be able to speeify really complex geometric dependencies between picture elements we need an extension mechanism that goes beyond the presented concept of predicaties and tokens. For example the following query caimot be expressed by the मFIC lancuace features presented imtil now:

Find all pictures with the following properties: above (in this context above stands for a larger i-walue) a red rectangle contained in subpicture A there is a green circle, which has at most twice the size of the red rectangle.

Such complex queries can only be resolved via the introduction of vaiables. bFic provides two ways for the definition of variables:

- explicitly: a unique variable name can be declared in a DEFPIC / D震NAC / DEFOBJ statement declaring a variable of type BIC, MAC; and OBJ, respectivedyy. The following lines show an example for the definition and use of BfC variables.

DEPPIC pid AS EXT: ;
EET: $:$ Where (pid $_{3}$);
The first statement defines a query and attaches the unique variable name pid to
it. This declarative statement does not result in any search operation on the picture data base. However, when it is encoimtered in the precompile phase, it is parsed and prepared for execution (determination of the access paths, optimization, ...). The execution of the predefined query is done in the successive GET statement, searehing for all pictures which include at least one reference to the n subpictmes pid defines.

Although a reference to the physical sequence of objects within a picture is of importamee only in a few situations this ean be achieved in DICC via postpositfixes '.' (relative offset to the start of the pieture) and '!' (relative offset to the start of a picture within an object type or class of objects). This is used in the next example using PIC variables in a more practical context.

Find a circuit, in which the first 5 NAMMDs, the first 10 FLIPFLOPs and the first 3 NORs
 be in the right half-plane ($\boldsymbol{x}_{3}, y_{\delta_{2}, w_{4}}, y_{4}$):

DIHPPC nand AS GET ••日;

DHEPPC nor AS GET ... :
Get All PlCLURES WHE
((namiln) $\{1,55$! ! (fliipfllop, $)\{1,10\}$!

A half-plane is specified by two points and lies to the right of that vector. The above example utilizes the fact, that nested tokens are always maximized whereas tokens on the outmost level are minimized. This can be seen in the following two lines:

The token in the first query statement specifies that all circles within a pieture must have colour red. Whereas the token in the second query statement says that there has to be at least one red circle, i.e. circles in other colours are allowed.

- implicitly; within a predicate of one DITC statement the tokens are assigned ascending numbers within the current level of '()'-parenthesis. On each level the numbering process starts again with number one.

Essentially an implicit token identifier is the path of the corresponding tree structure. Imphicit token identifiers are generated for each DICC statement again, so they can
be seen as local variables within a statement.

Find all pictures which contain a red equilateral triangle and a brown rectangle. The triangle is centered above the rectangle.

GHT ALL PICTURES MHEE

(REC, FCOLOREbrown, XMIDF:XMMD(2)) I

Find all pictures which contain a blue rectangle and a blue circle. The circle is centered above the rectangle with distance k and its diameter is less equall the width of the rectangle (character 'i').

GHT ALL PICTURES WHETE

We conclude this section by presenting the solution of the query stated as a motivation example at the beginning.

DEFNC redrec AS RESTIRICT subpica TO (REC, FCOLOOREEdd)];

 SIZE $\leq 2 *$ SStzEE (

Due to spaee limitations a lot of details and further possibilities of DTtC , e.g. manipulation statements, embedding in host languages, ete, have been omitted. The interested reader is referred to [24].

4 Summary

The presented object=oriented pietrue query language ptic is a first step towards a generalized pick-function. It has been designed with a special envirenment in mind, however, the principal concept is open to extensions for other applications. bfic is a relatively simple language based on only three basic geometric types and a well defined token/predicatue comeept. Within this framework various attuributes together with the concept of variables establish the power of pte:

References

References

[1] Blasgen M.W. et al.: System R: An Architectural Overvien_ IBM Systems Jnl., 1981, Voll229\#1, pp.41-62
[2] Chang S.K. et al.: An image processing language with icon assisted navigationn IEEE Trans, on Software Engineering, SE-111\#8, Aug.85, pp.811-819
[3] Chang S.K./Fu K.S.: Picture Query Languages for Pictorial Data Base Systems. IEEE Computer, Now.81, pp.23-33
[4] Chang S.K./Lechikawa T./Ligomenides P.A. (Eds.): Visual Languages. Plenum Press, 1986, 460pp.
[5] Chen P.P.: The Entity Relatienship Model. Towards a unified view of data. ACM TODS, Voila\# 9,1976
[6] Encarnaeao J./Krause F.J. (Eds.): Files structures and data bases for CAD. North Holland, 1982
[7] Fellner W.D./Stägerer J.K.: PIC - eine ohjektorientierte grafische Abfragesprache. Proceedings of the Austro Graphies, Sept. 1988, ACGA"88, Wien
[8] Finkelstein R./Pascal F.: SQL Data Base Management Systemss. Byte, Jan.88, pp.111-123
[9] Fischer W.E.: Datembanksysteme für CAD Arbeitspldtze. Informatik Fachberichte 70, Springer 1983
[10] Giting R.H.: Geo-Relational Algebra: Model and Query Lamguage for Geometric Datrobase Systemar, in: J.W. Schmiidt/S. Ceni/M.Missikoff (Eds.): Advances in Datalkase Technoleggs EDBT"88, Proc. of the Int.Conf. on Extending Database Teehnology, Venice, Mareh 1988, pp.506-527
[11] Güting R.H.: Modeling Non-Standard Datalbase Systems by Many-Sorted Algebras. Univ. Dortmund, Forschumgsbericht Nr.255, 1988
[12] Guttmann A./Stonebraker M: Using a relational data base management systemn for computer aided desigm. IEEE DB Engineering, Vol.5ist2, June 1982, pp.21-28
[13] Härder T./Reuter A.: Architektur von Datembanksystemen ffuir Non-Stomdurd Amwendiungem. in: Blaser A./Pistor E. (Eds.), Leeture Notes in Computer Science 94, Springer Verlag, 1985, pp.253-286
[14] Henderson Lu/Journey M/Osland C.: The Computer Graphics Metafilte. IEEE Computer Graphies and Applications, Aug.86, pp.24-32
[15] ISO International Standard: Information Processing Systems - Computer Graphics - Graphical Kernel System (GKS) - Functional Descriptioum ISO Standard IS 7942, Oet. 1985
[16] ISO International Standard: Information Processing Systems - Computer Graphics - Interfacing Techniques for Diallogues with Graphical Devices (CGH). Part 1-6, ISO TC97/SC21 N1179, Working Draft, May 1986
[17] ISO International Standard: Informatiom Processing Systems - Computer Graphies Metafile for the storage and transfer of pieture description information (CGM). ISO IS 8632, ISO/TC97, Aug. 1987
[18] ISO Draft International Standard (Addendum 1): Information Processing fystems - Compun ter Graphics Metafile for the storage and transfer of pieture description information. Addendum 1, ISO 8632-PDADI, ISO/TC97/S24/N199-N22, Nov. 1987
[19] Lamersdorf W./Schmidt J.W.: Rekursive Datemmodellee. Informatik Fachberichte 72, Springer Verlag, 1983
[20] Lonie R.A.: Issues in data bases for design applicationss, in: [6]
[21] Lucas P./Zilles S.N.: Applicative Graphics using abstract data typess. Research Report RJ 6198, IBM Almádén Research Center, Apr. 1988, 55pp.
 in: Imformatik-Fachberichte 72, Springer Verlag, J.W. Schmidt (Hrsg.): Sppachen fouir Datenbamken, 1983
[23] Preston K.Jr.: Progress in Image Processing Languages, in: Duff M.J.B. (Ed.); Comparting structures for Image Processing, Academic Press, 1983, pp.195-211
[24] Stögerer J.K.: Suchen und Ersetzen in Billdddatienbestidinden. Inst. f. Informationsverarbeitung, Techmical Report, 1988, Graz University of Technology (to appear)
[25] Stonebraker M./Wong E./Kreps P./Held G.: The desigm and implementation of INGRRISS. ACM Trans.on Data Base Systems, Vol.1:1/t3, 1976, pp.189-222

"ORBIS PICIUUS" AND
 THE INNIEGRATED
 CAD/CAM SYSTEM

L. Cser, P. Tamas
Techmical Umilwerisstity of Budapest

Abstract

Thie application of colour graphics in CAD/CAM mechanicall engineering systems is for visualization (e. g. representation of temperature and strain stress-fields etc.)). The presentation is about a practicall application in wich selected technical information of casting in the integrated CAD/CAM systems is expressed by the colour and layer techniquess. The product design processs, that is the finished component - casting - casting pattern in the integrated CAD/CAM system and the CMC machining of cast patterns require non-traditioman design methodiss. The application of the described method needs a new form of the cooperation between design and CAPR..

Keywords: Casting pattemm, CAD/CAM Colquarss, Layer techmicss.

1. THE EANIROMMENT OF COMPUTER-TECHNICS

The development of computer-technics created a new sitwation on the field of CAD/CAM applicattiom. The application of the new graphical means that is the colour displayy, the colour hardicopys, shading technique changed the way of usage on a number of different fieldss. These are e. q. the visualization of FEM resulttss, computer design ((e. q. machine productiom) textil design etc.

The colour-technics applications mentioned above have two essential advantagess:

- It assures a better iucidityyr.
- There is a figurative representation of the objectss.

2. PRE-FABRICATION IN CAD/CAM SYSTEMS

In the system-plan of the integratead CAD/CAM systems there is logically sequentilall unity of constructional planmingg, technologicall preparattiom, NC programming and CNC production if the production starts from freeformed forged piece or a sawed rodi When there is a more complicated forming operation in pre-fabrication (e, q. cold flowimgi, die forgimgs, castimgis, the logicanl sequence is brokem, prefabricate forms, technological procedures and tools have to be designed that is the constructiomall planning modull has to be used repeattecdillyy. In such cases there is a logical loop in the processs.

Hereinafter we are going to present the case of casting as one essential obstacle in the way of CAD/CAM integrattiom.
3. PROBLEMS OF THE PRODUCTION FÓE CAST SPARE-PARTS

As well Known the steps of casting are as followss:

- First the assembly drawing of the ready sparepart.
- Then making the plan of cast piece om the basis of the constructiom.
- Thirdly the planning and preparing of the casting pattern usually from wood. The wooden casting pattern forms the shape of the castimg in the moulding sandi.
- For hollow castings so called "cores" have to be made, The "pattern" of the cores is produced like the casting pattern but in this case the negative of cores has to be moulhdech,
= The sand forms made by the casting pattern give the shape of casting
= Casting requires well=chosen casting techmollagyy.
There is a big contradiction between the highly developed CAD/CAM production and the traditiomail casting pattern production techmiquass.

This contradiction appears mainly in the following fields:

- The bottle neck of product output is the casting pattern facteriass,
- The eventual repeated using of canting pattenms causes heavy pattern stosage costss.
- The pattern production takes purchase mainiy on the experiences and skilis of speciahinsts.

The only way of lifting this contradiction is the integration of the planning and production of casting pattern as well as the documentation storage must he solved in the complex CAD/CAM systerm.

Troubles can be caused if the integrated CAD/CAM system works on a shared intelligence net because it means the common use of the CAD system or the duplication of it.

The first solution infers that the CAD sub-system runs on host computer with several independent work-stattionss, the latter requires a constructiomal planning sub-system for the work-station planning the technology of the prefabrilcattiom.

4. THE TASKS OF CAD/CAM IN CASTING

Warmen speaking about cast spare-parts technology and construction are not separable from each other.. During planning one has to regard

- the function of the spare part,
-,the materiall of the castimg,
- the casting technollagizy,
- workabillittyy,
- strengtith,
- constructiomall restrictionss,
- process of forming and pattern makings,
- avoiding of spoillage.

Because of diverging requirements the "science" of casting construction and pattern making belongs even today to "artss'".

The steps of planning casting patterns are the
follawime;

- making the assembly drawinat,
- making the geometry of castings,
- planning the geometry of the pattem,
- forming the cores and core markss,
- choosing the adecfiuate core boxass.

The basic elements of technologicall preparation are the followinge:

- choosing the plain of split of the castingo,
- determining the upper and lower part of the castinga,
- form-modification according to casting technology requirementiss,
- working toleramoess,
- determining cores and core markss,
- rounding off the not castable angless,
- determining the necessary moulding obliquiitiless,
- mounting the casting patterns on sheetss,
- regarding the cooling shrinkage,
- optimalizing the casting techmollogyy.

5. COLOUR-GRAPHICS STORAGE IN THE CAD/CAM CASTIING SYSTEM

As discussed above casting planning and the elaboration of construction must be connected processs. In spite of this in practice the design engineer and the casting specialist are two different people working separattellyy.

During a traditionall design process the construction and the casting pattern are formed by several cross check talks between the design engineer and the casting speciallivstt.

In the integrated CAD/CAM system one has to find the way of information storage and flow that gives the adequate information to the design engineer about casting problems and to the casting specialist about constructiomall modifications without interfering with each other's works.

The method to store and convey information and thereby create an iterative connection between the design engineer and casting specialist is the usage of layers and colour-teechmilass.

When casting patterns are being designed the steps of casting pattern planning and technologicall preparation come one after the others. In every step drawings containing the geometric information are put on a new layer and so modification can be realized only on the given layer. By this technique it is possible to separate or to compare the different work steps and to move back to a preceding step and by doing so insuring the flexibility of the design processss.

Standards for drawings containing casting pattern geometry - departing from machine engineering practice - prescribe colour descriptions of informattion. On the drawing interferences of the casting specialist are represented by various col ourss.

The software jintegrated in the CAD/CAM system planning casting technology makes it possible to use colours in a way that design information on the liagers give a standard pattern drawing when the liayers are put on one anotherr. In a such a way the design engineer is able to separate parts from the who le and having necessary information to maike adequate documentation about casting pattern productiom.

Figures 1-6. visualize the contents of layers of stuch a planning system.
5. COLOURS AND STANDARDS
Im the preceding century colours were used in
machine design for the identification of various
material types. On figure 7 , 8 you can see the
originally coloured pages of a locomotive design
gride from 1871 . Later the development of
manifolding technique it became necessary to
idemtify with the help of different line typess.
But by doing so the lucidity of description was
decreasedh.

The present graphical standards give the possibility to colours to be applied as IImiformation transmitttenss. The GKS ((ISO 7942)) defines only line types,r proposals for registration of graphical items handed in to ISO deal also mainly with line types and hatchststyliess. PHIGS includes a lot of possibilities for design engineering to get more efficientr. So the usage of colours in information tramsmission can probably be introduced and "orbis pictus" marches into the world of product modelis too.

Fig. 2. Drawing of eastimg patterm (colloumedd))

Fig. 3. The layer of patteems. (redi))

Tigg. 4. The laayer off coress (bhure))

Fig. 5. THe lager of runners (green))

Fig. 6. The layer of coreboxes (redi)

Figg. 7. A drawing of a locomotiwe design guide from 1871 ((colouredi)

Fig. 6. A drawing of a locomotive desigg guide froam 1871 (collowneed))

EDEN - A GENERAL-PURPOSE GRAPHICS EDITOR ENVIRONMENT

W.D. Fellner, F. Kappe IIG, Institutes for Information Processing Graz, Graz University of Technology and Austrian Computer Society (OCG)

Abstract

Systems allowing the creation and manipulation of graphical information (so-ealled Graphic Editors) have beeome essentidid in various fields of applications (e.g. CAD, CAI, DTP, Vtx). At the same time the typleal user of such a system heis changed. Not computer experts, but designers, secretaries, teehnielans, teachers ete. are todays typieal users of computer graphies, mostly on microcomputers. Obviously it would be desirable to have a common coneept of graphies editing covering many applieations.

EDEN (short for EDitor ENvironment) is a generic concept of object-oriented graphics edifing: Many different applieation-specific graphic edlitors can be ereated using EDEN as their common nueleus. EDEN supports the objects and aturitbuthes defined by CGM/CGI, but in addition mechanisms are provided to extend the set of supported objeets for a given application.

This paper illustrates the beisic features and the extension mechanisms of EDENbased ediltors and presents some edready existing EDEN-based applications (for CAD, CAI and Vtx).

[^7]
1 Motivation

1 Mottivation

The recent breakthrough of the microcomputer has also influenced the fleld of computer graphics. While in the past the processing of graphical information was limited to dedicated machines with expensive graphics hardware (such as plotters, digitivers etce), the commpetitive marketplace of today forces microcomputers to provide powverful graphiicss facilities.

This was made possible by the availkbibility of high resolution, multi-color raster displays at a reasonable price. On the input side the mouse made its way to the standard grapliics input device of todays micros. And because of the increasing computational power of the microcompuiter itself (16/32-bit processors, coprocessors, megabytes of memory.....)) mone graphics applications are possible on smaller machines (think of Computer Aided Design (CAD) or Desk Top Publishing (DTP)).

At the same time the typical user of such a system has changed. Not computer expertse, but designers, secretaries, technicians, teachers etc. aire todlays typical users of computer graphics. This leads to an increasing demand on software as well, espeaciedly on progaams allowing the creation and manipulation of graphical information by the user - so called Graphicics Editors.

These editors can be used for various applications, but a set of common features shared by well-designed graphies edlitors can be defined. Prom both the users and the software developers point of view it is desirable to have a common concept of graplaics editimg cowering many applications.

EDEN (short for EDitor Blikritomment) is a generic concept of object=oriented ${ }^{1}$, inHeractive graphies editing: Meiny different applieations can be created using EDEN as their common nueleus (Figure 1).

2 Basic Features of EDEN

EDEN itself consists of a set of routines that handlye:

- Communication with the user (menus, mouse, 学eyboard.: :)
- Driving the graphies hardware (display ebjects windows.::)

[^8]
2 Basic Features of EDEN

- Access to internal data structumes (insert, delete, pick object...))
- Interface to the operating system (select, read, write file...))
- frequently used functions (segment treinstonmations, rubberbamding, zooming...))

Obviously these functions are (in part) machine dependent.
These basic concepts implemented in the EDEN nucleus Ene incorporated into any EDEN-based graphics editor. The key features of such an editor are described below. In short, these are the features that we think a state-of-the-art and user-friendly graphics editor should offer.

Figure 1: EDEN as a common nucleus for various applications

2.1 The Segment Concept

The creation of high-quality images is a time consuming job, even with sophisticated editing tools. Therefore the user will try to save some time by reusing complex sub-images in other images, if he is encouraged to do so by a system offering adequate functionality.

We will refer to these sub-images as Segments. Segments are kept in a kind of database by the system and may be used in arbitueiry images by the user. In addition, 2D transformations may be applied to segments, thus increasing their flexibility. Segments may eliso be nested (segments containing segments).

For an image containing segments only the references and the tramsformation parameters are stored. Any modification of the segment -segments are adited just like ordinary images - will therefore residt in a modification of aill lmages refering to that segment.

2 Basic Features of EDEN

Segments ustuilly are created by picking some objects out of an existing image. The objects forming the segment camnot be accessed individually after this operation (the reverse operation - split segment - must be used to obtain the individual objects again). Only 2D tramsformations (any 3×3 matrix representing a homogeneous coordinate tremsformation) can be applied to the segment as a whole.

Segments have turned out to be one of the most powerfuls tool for image creation.

2.2 User Interface

A good user interface is essential for acceptance of the system by the user. It is not easy to define what a 'good' user interface is; however, there may be defined several featumes that a modem, interactive program should support:

- Menus:

The user shoidd not be forced to memorize commands necessary to work with the system. Instead the functions should be offered as menus. The structure of the menus, called menu tree, shotild have the following features:
-Small depth (means more width). The user has to provide less input and more functions are offered simultameously.
-Logical structure. Similar functions shoidd reside in the same menu, this makes functions easier to find.

- Uniqueness offfumetions. It is confusing to reach the same functions via different patlis in the menu tree. Therefore this situation should be avoided (only one way to get to a specific function).
-Clarity of fuunction description. This is a difficult goal to achieve, because there is only a limited amout of screen space available to describe the corresponding function. Usually one (eventuedly abbreviated) word must be enough. One solution is the use of leons instead of words, but this should be used with ceire. A different solution is the avzallabibilty of a context-sensitive help fiunction that provides the user with a more detailed description of the functions of the selected menu.
=No redundant menus. It is annoying to get and 'Are you sure (Y/N) ?' prompt after every selection of a delete operation. Instead of having to confirm the selected operations it is more comfortable to have a global Undo fumetion.

2 Basic Features of EDEN

- Graphical Input:

Graphical objects should be entered and manipulated by means of a graphical input device such as a mouse or a digitizing tablet. The user should not have to edit coordinates as text using the keyboard. The selection of menus using a graphical input device is already a generally accepted practice. The keyboard should be used only entering text comstants (such as filenames) only.

- Graphical Output:

The quality of the display is importeint for acceptance of the system. In this context quality does not only stand for the hardware characteristics (resolution, colors, refresh rate), but - even more important - for the user-support during mamipulating the image on-sereen.
-Rubberbanding is a technique that helps the user to define an object. The term is derived from the way a line should be entered: after the first point is fixed, a line is drawn permanently from the fixed point to the (moveable) cursor, like a rubber band of which one end can be ptilled over the sereen (Figure 2a). The concept can be extended to adl graphical objects; rubberbanding is extremely useful when manipulating axes (Figure 2b), axe chords, are pies or splines (Figure 2c), where it is non-trivial for the user to tell the exact appearance of the object from its defimition points.

Figure 2: Rubberbanding line (a), aire (b), and B-spline (c).

2 Basic Fratures of EDEN

-Display speed is not a precondition for rubberbanding only. Sometimes it is necessary to redraw the whole image (e. g. after deletion of an object). Ob viously this should happen as fast as possible. Thenefore most of the display algonithms should be implemented in heundhware.
 ting pixels on the screen. Zooming lets you view and manipulate a magniffied portion of the image. Gridding superimposes a rectangular grid (of variable size in x - and y-directions) on the image. Point snapping is similar, but instead of displaying a grid the screen positions, where the cursor Gin be located, ane restrieted to grid points. Both techniques facilitate editing of regular structures.

- Undo function:

Humans change their mind or make mistakes. A system with high human interraction must be expected to provide a comfortable means of error correction. The number of actions necesseiry to correct a mistsike should not be much more than to make the mistake. The easiest way to achieve this goeil (for the user, not for the programmerr) if a global Urdo function that lets you take back any keypress (or mouse buttron press) and resumes at the situation previous to that keypress.

- Configuratiom:

Different users may have different requirements. The system should allow the configuration of system parameters by the user.

- Help function:

Most userf prefer playing around with the program rather than reading mamualls before using it. In order to prevent him from a frustrationg experience an interactive, context=sensitive help function shotld provide the user with the information he needs. This electronic manual provides faster and better access to specific information tham the printed one, making the latter obsolete.

Additional features such ala Action macros (lets you group together a series of operations for later feuse), an Automatic recovery after system failome, creation of backups ctc. can be theught of 配是N supports all of the features listed above.

2.3 Gnapliiess Standands

EDEN is not designed to support the editing of pictures in a single graphics standard. Existing standards for videotex images, CAI (Computer Aided tastruction) lessons, CAD and DTP applications are too different to support them all in the eDeN nucleus.

But EDEN adopts the basie concepte of existing and aceepted standards such as GKS ([6]), CGM ([8]) and CGI ([7]): Mainy of these concepts A4e found in the videotex image

3 Creating EDEN-based Applications

encoding staimdards CEPT ([1]), ECMA ([3]), and other standards. EDEN supports the following concepts of GKS, CGM and CGI:

- The primitives, GDPs and their atturibibultes.
- The atturibute handling (Bundles, ASFs).
- The segment concept.
- The workstation tramsformation.

3 Creationg IIDIEN-based Appplications

Thife main design goal of EDEN was not to support everything that might be necessary for some application, but to allow extensions of EDEN to do so. When creating am editor for a specific application, it may be necessady to extend the set of supported objects, to supply routimes for manipulation of these objects and to provide an interface to existing software and graphics steindards for that application. The necessary extension mechanisms are described below.

3.1 Wrateandingg thlee satt off ssuppporteed odijpeet ts

EDEN provides three different, expandable sets of objects (Table 1):

Object type:	Atom	Compound	Segment
Created by:	Programmer	Programmer//Super-User	User
Definition:	C program	Program"	Interactive
Machine dependent:	Yes	No	No
Stored in:	EDEN module	User modtole	Picture file
Added at:	Link time	Run time	Reference
Examples:	Ellipse,	Arrow,	Logo,
	Animation	Bathtub,	Phone,
	Sound	Nandgate	House

Table 1: How new objects cein be added at different levels.

[^9]- Atoms are the basic objects all other objeets consist of. There are some built-in atoms (Polymarker, Polyline, Text, Fill Anea, Cell Amay and generalized drawing primitives (GDPs) like Circle, Anc, Arc Chord, Ape Pie, Reetangle aind B-Spline)
and additionail application specific atoms. The routimes to display and manipulate atoms are organized as a linked list. Only thase objects that cannot efficiently be displayed by combining existing atoms should be defined as new atoms to keep this list short.
- Segments need no programming at adV. The may be defined by the user. Local segments (are accessable only in the picture where they are defined) and global segments (may be referenced by any pieture) may be created.
- Compound objects can be displayed using atoms but need more functionality than segments. The necessary programming may be done by the programmer of the application or by an experienced user (Super-User). The definitions of the compound objects for an application are machine independent and may therefore be added to the system at rimtime.
a) Arrow

X: defined
O : computed
b) Bathtub

only above dimensions available
c) NAND-Gate

only 4 rotation angles available

Figure 3: Examples of compound objects
Some examples are shown in figure 3. The arrow needs to have 3 points computed from 2 other given points and can be displayed using line and fill area. The batthturb ean only be defined in available sizes. In addition, the display routine might check that the long side is beneath a wall. A price might also be associated with this compound object to compute the value of the installations in a room. In case of the NAND-gate, the size is constant aind only 4 orientations are allowed. The display routine could also perform some application dependent checks.

3 Creating EDEN-based Applications

3.2 Interfacing the World

Obviously pietures and segments generated by EDEN-based applications have to be stored somehow. Usually there exists an application-specific file format for this purpose, but use of that format may have disadvantages (for instance, the hierarehical segment structure might be lost, the encoding/decoding is slow ete.). Besides, an applieation-independent file format is desirable to interchange pietures across applieations. Therefore EDEN supports both (see Figure 4): An apphication-independent file format called Picture Intemchamge Coding (PIC) and the encoder/decoder concept to provide an interface to applicationdependent file formats.

Figure 4: The World Interface

3.2.1. Hiattume linttencthange Coding (PIIC))

A file format for encoding pletures can be designed with a number of different objectives:
 with restricted storage capacity or transfer bandwidth (Example: CGM character encoding ([8] part 2), CEPT videotex standards ([1],[3])).
ii) Processing Speed: The encoding uses binziry data formats similar to the representation used within the computer in order to minimize processing overhead in meading/writing the data file (Example: CGM binary encoding ([7] part 3), PLC).
iii) Human Readability: The representation of the data is easy to read, type and edit using a staindard text editor (Example: CGM Clear text encoding ([7] part 4))),
iv) Extensibility: The encoding allows future growth in a natural way. The coded file should be sharable by a number of applications - even if they do not all understamd everything that is in the file (Example: PIC, TIFF ([4])).

The key feature of PIC-Files is that they may be generated by different applicatiomss that suppport different atoms and compotmd objects. This implies that an application has to lgnore aill data not related to the internal list of supported objects. All information stored in a PIC-File is contained inside so-called blocks.

$$
\text { (block) ::= (ID) (length) }(\text { data })[0]
$$

The $I D$ is a 4 -cloarracter (a 32 -bit longword) token that identififies the type of the block. The length of the following data in bytes is also encoded with 32-bit. The meaning of the datta following depends on the type of the block (the ID). In particular, it may contain other blocks, thus introducing a hierarehical flle structure. An optional zero byte is used to align blocks on word boundaries.

This bloek-oniented file structure has the following advantages:

- The ID is a mnemonic name for the type of the block. When adding new blockss neme cllashes have to be avoided. The length of the ID (4 charaters) is a compromise between case of adding new IDs and processing speed.
- The PIC=Reader may easily skip over blocks with unknown IDs by using the lengthr-of-data information. It is also possible to sean the file at high speed without interpreting the data.
- The data field in fuily traspairent (einy sequence of bytes may be stored here).
- The smallest unit of processing is a byte, Blocks are word-alligned, increasing the processing speed on most modern processors.
- Blocks can be nested. For instuince, pictures may contain segments, the segments are composed of atoms. In addition, se-ceilled Entutronment blocks may be used to define common properties of following blocks on the seime level (PASCAL-like seope fules):

3.2.2 Code Converters

The images created by an EDEN-based graphics editor will usually have to be processed by some other application, get printed (plotted) or stored somewhere (e.g. a network) in a standardized code. On the other hand, one might want to edit the output of some other application with the EDEN-based editor.

Because these applications cannot be expected to understand PIC-Filles, the images have to be converted to (or from) a different pieture description format. These code converters can be divided into 3 groups (see figure 4):

1. Decoders convert pictures in some application-speciffic format to standard PIC-Filles. If any features of the input are not supported by EDEN, they have to be mapped to something similar or new EDEN objects have to be added by the mechanisms described in section 3.1.
2. Encoders convert PIC-Files to some applicatiom-speceific representation. Encoders can also be used to get a hardcopy of a pieture by generating appropriate printer codes.
3. Object converters convert PIC-Filles to PIC-Files, but replace some EDEN objects by different ones. This might be necessary to process pietures created by different EDEN-based applications (e.g. by splitting compound objects of the 'source application' to atoms of the 'teirget application').

A code generator is a stand-allone program converting data from standard input to standard output. An Encoder, for example, is used by EDEN by piping the PIC output to the encoder rather than to a file. The output of the code converter may be piped elsewhere (e.g to another code converter, a file, a printer or - in the case of an object converter back to the EDEN PIC-input (figure 4)). Code converters may also be seen as tramslators from one (picture description) language to another - a compiler - and ean be written using compiler generation utilities such as $L E X$ and YACC.

4 Existing EDEN-based Applications

4.1 Generic Videotex Editor

The first prototype for EDEN-based graphics editors was an editor for creating videotex frames [9]. This editor rums on PC-AT compatibles with a special graphies controller and a special videotex board under MS-DOS. The editor allows editing of CEPTI-CO alphamosaic text not covered by the EDEN nucleus and related objects. This editor also uses a number of code converters:

- A decoder for interpreting alpha-geometric videotex frames (both stamdardls are supported). Because of the coding structure of the two standards the data may be processed by one decoder.
- Two encoders generating videotex encoding acording to the above stamdardds plus an encoder that produces printer codes for a kyocera laser printer. These printer codes may be used with $T_{E X}$ documents ${ }^{R}$.
- An object comwerter for converting alphageometric objects to alphamasaic objects (DRCs).

More emcoder/decoder pairs may be added to support more videotex standards or primterse.

4.2 CAI Editor

An editor for creating CAI lessons was afso modelled using the EDEN nucleus [5]. Basically, this editor introduced the following extensions:

- Special atoms had to be defined for the support of animation, sound and answer judging.
- The editor contains additional functions to organize and maintain a lesson (a lesson is a set of single frames).
- In order to check the interaction of frames a lesson executor is also contaimed.
- Encoder/Decoder pairs are needed to support different courseware formats.

4.3 CAD Editor

Amother editor built on top of the EDEN nueleus was a special CAD-application in the area of energy and communication networks.

Besides porting the system to another hardware (Apolle workstations) and to a multitasking environment the main extensions were;

- The intafface to a felational data-base helding all geometrical information.
- The interface to several processes performing various computations on the generated drawings (fedimaney checks, application specific computations,...)
- The s女pport of additional input devices (seaimer, videe camera, special graphice tablets) and output deviees like special plothers.

[^10]
Literature

1. CEPT: Wideotex Presentation Layer Data Syntax (lssue 1); Part 2 - Geometric Display; T/CD 6.1, Insbruek, Austria (May 1981).
2. CEPT: Videotex Presentation Layer Data Syntax (lssue 2); Part 1 - Alpha-Mosaic Display; Part 4-d - Define DRCS, Colour, and Format; Part 8 - Reset; Revision of T/CD 6.1, Cannes (Sep 1983).
3. CEPT: Videotex Presentotion Layer Data Syntax (lissue 2); Part 2 - Gemmetric Display; T/CD 6.2, (Nov 1987).
4. Davenport T., Wellon, M.: Tag Image File Format (TIFF) - Rev. 4.O; Aldus Corp. \& Microsoft Corp. (Apr 1987).
5. Holwesk Gra Ein komfortables Editiensystem fuir CUUF; Masters Thesis, IIG University of Technology Graz, Austria (May 1988).
6. ISO: Information Processing Systems - Compwiter Graphies - Graphical Kernel System (GKS) - Functional Descriptiont; ISO IS 7942 (1985).
7. ISO: Information Processing Systems - Computer Graphies - Interfacing techniques for dialogues with graphical devices (CGI), Part 1-6, ISO TC 97/SC 21, N 1179, Working Draft (May 1986).
8. ISO: Information Processing Systems - Compwter Graphics - Metafile for the Storage and Transfer of Picture Description Information (CGMM); ISO IS 8632 (Aug 1987).
9. Kappee $F=$ Design und Implementierthng eines EDENF-basierenden Bildschirmiext=Editors; Masters Thesis, IIG University of Teehnology Graz, Austria (Feb 1988).

THE INTEGRATED GEO-INFORMATIONSYSTEM INFOCAM/ORACLE

Institute for Machine Docmmentation Research Center Joanneum, Graz

Abstract

Absstract

Existing syystems for manipulating geographical data, s.a. maps, plans, contoir lines, satellite-pictures, air-pictures, etc. have often separate modules for geometrical data and thematical data. Some systems handle thematical data with relational databases, but graphics only project by project with normal file-handling. This method causes a lot of disadvantages.

Our system INFOCAM is a common project between the Swiss company Kern, the Institute for image processing and graphics, and our instiftute. INFOCAM is totaly based on the relational database ORACLE V 5 , so geometrical and thematical data are both stored in one and the same database. And therefore we do not have any filehandling to manipuilate data. In this paper we describe the arefiteeture of the INFOCAM.System, and the concept of the database with the most lmportant tables and their relations.

1. IINRBDOUTI $8 N$

11.1 Germeral

The most existing systems for manipulating geographical data, s.a. maps, plans, contour ines, satelliterpictmes, aitr-pictures, ete, often have two differnt ways to manipulate geemetrical and thematical data. Some systems handle thematieal data with relational databases, but graphics afe stoned with normal file handling project by prejeet. This method causes a let of disadvantages.

In the geometrical part of the system you cannot merge parts of existing different projects to one mew project (e.g. you cannot merge the housing-estate from project one with planned streets of project two). A second disadvantage often is the very loose connection of geometrical and thematical data. Many systems only allow the manipulation of a whole thematic, but not of a part of it (e.g. it is not easy to show all streets wider than 12 yards and build with concrete). A third disadvantage: You have no direct relational access to geometrical data (eg. highlighting aUl areas wiith more than four edges).

Our system INFOCAM is a common project between the Swiss company Kern, the Institute for image processing and graphics, and our institute. INFOCAM is totaly based on the relationall database system ORACLE V 5, that means geometrical and thematical data are both stored in one and the same database. And therefore we do not have any file-handling to manipulate datia.

1.2. Addwantgermandddisiddxantagesof fudationabidedadasses

Why do we use a relational database to store the data? Other systems often use databases oully for thematical data, but not for geometrical information. We have decided to hold the whole information in the database (there exits no file for storing data) because then you automaticealy have following advantages:

- sheetfree working
- same dataarea for all projects (the database), and therefore no problens with combining new projects from older ones
at any time consistent data
- no file management neccesary
- multutuser capability is totaly managed by the database
- users and their access fights are also managed by the database
- easy way to export and import data, and to exchange data with other systems and databases
relational accers also on geometrical data
a direct connection between geometrical and thematical data, which means, hat you can query information by combining thematical questions with geemetrical questions hardware independaney for datastorage, because ORACLE is available for neark aill types of hairdwafe
it is easy to use the data in other pregrams via the ORACLE programming toels distríbuted systems are directly supported via ORACLE

The disadvantages of using relational databases are:
first of all, you have to buy a relational database, and so the customer has to pay a little bit more for this system on the other side, it is a new concept for the developers; there are no general known datastructiures for storing geometrical or graphical and thematical data; it is a great work to test and develope new datastructures, with no guarantee that it will ever work;

2. COMPONENTS OF THE SYSTEM

The whole system consists of about 9 great modules, of which I will discribe only the important ones.

The main module is called IMAGE, which is used for interactive graphical work. Here the inputs, updates and deletes are done. A submodule to IMAGE is INCOME, a module for manual digitalizing of maps etc.

An other importemt module is called IMPRESS, to create interaetive maps and plans.

ATOS is used to manipulate contour lines or triangulations.

All these modules (and some others not deseribed in this paper) are based on the module INFOCAM/ORACLE, which stores all the data - geometrical and thematical - manages the data-transfer, data-exchange between the modules, the user controll, access control, backup control and a lot of other management functions.

3. COMPONENTS OF THE DATABASEPART

The part INFOCAM/ORACLE is - as you can see above - a very large and complex module. So we have decided to divide it into three submodules called DB-MANGAGER, DB-INFO and DB-USER.

3.1. DDBMAnager

This part is the main control program, which manages the users, their accessrights, the projects stored in the system or backuped on tape, initililises new thematical tables, ete.

3.2. DB-Info

This module is used for fast querying the database to get an overview over the stored data, or to make a fastplot of any geometrical information. It is also possible to retrieve only textinformation with or without corresponding geometrical information. You can also query by graphical input, e.g. you can use the mouse to point on an imknown object, which then is described.

Generally DB-Info is used to retrieve information and data, but not to manipulate any information permanentlily.

33. DB-User

This is the main part of the whole system. With this module all the manipulations, inputs, and deletes are handled. This module has no own interface to the user; it is only an internal module, which manages the data to the manipulating modules such as IMAGE, INCOME, etc.

As the whole system is a multiuser system, this module also handles the access control and the temporary access restrictions, if one user wants to manipulate the data used by an other user at the same time.

It is not possible to discribe all used tables and concepts in this short paper. But we will explain the most important tables for storing the geographical information, and some aspects of storing the thematical data.

The most important elements you have to manage are: points, edges, symbols, lines, regions and objects.

Points and edges are the graphical elements, symbols, lines, regions and objects are logical elements, e.g. a street is a line which consists of several edges. Also a region consists of one or more edges. An object is a set of symbols, lines, regions and other objects. This definition allows also a hierarchy of objects with no logical restrietions.

Each element from point to object has an identifier called id', which is a unique key over the whole database. This 'id' is the connection between the geometrical (symbol, line, region, ete.) and the thematical data (e.g. trigonometric information for a point, area of a region, meaning of a symbol, and any user defined information, e.g. water quality for a line which represents a river),

In the following we describe (in a shorted form) the main tables for the geometrie. (There are many other tables, or tables with more attributes than described here.)

4.1. Point-Table

Table POINT:

ID Identifier (20 digits, with 10 digits for an approx, x-coordinate and 10 for an approx, y-coórdinate)
$\mathbf{X} \quad$ X-Coordinate for the point
$Y \quad Y$-Coordinate for the point
Z Z-Coordinate for the point
NET_ID Id of an area in which the point lies
P_FLAG Information about the type of a point
etc.
42. EDGE-Table

Table EDGE:

ID	Ide
STAPRTTI血	Id o
END $P=$ ID	Id
BULK	$\mathbf{X Y Y}$

POINT_NUM Number of points in the bulk
Neidilid same meaning as point net_id
etc.

43. THEM_OF EDGE-Table

Table THEM_OF_EDGE
ELE_ID ID of an element (e.g. symbol, line, region, ete.)
E_ID IIDoffanedye
ORIENT Oriennatiounoffltisscede
etc.

4,4. TH_ATTR-Table

Table TH_ATTR
ID Identiffer
LAYER e.g. name of specific theamtic
ATTi first description of this object
ATTR2 nearer description of this object
XWMIIN minimum boimding rectangle of this object
XWMAX
YWMIN
YWMAX
etc.

4.5. Examples

An example of drawing a street may be the following:

Highway A2 as the name of the street would be stored in TH_ATTR.LAYER. A deseription of this highway is TH_ATTRATTR1 and TH_ATTRATTR2. The maximum area is TH_ATTR.XWMIN to TH_ATTR.YWMAX. With th ID of TH_ATTR.ID you have to go in the table THEM_OF_EDGE.ELE_ID to get the Id's of all edges for this object Highway A2 in THEM_OF_EDGE.E_ID. With this THEM_OF_EDGE.E_ID you have to go to the edge-table (EDGE.ID) and with the information in EDGE.BULK and EDGE.POINT_NUM it is possible to draw the wanted object.

A SQL query statement to retrieve this information would have the following form:

SELECT	e.point_num, e.bulk
FROM	edge e, them_of_edge t, th_attr a
WHERE	a.layer $=$ ='Mighway A z^{\prime}
AND	t.ele $1 \mathrm{ld}=$ a.ld
AND	e.id $=$ t.eid;

To retrieve the pointinformation of all points of this special street, following query would be necessary (let us assume that there is a table pointinfo with the wanted information of a point):

SELECT	p.infod, p.infor, ...
FROM	point_info p, edge e, them_of_edge t, th_attr a
WHERE	a.layer $=$ = 'Highway A2'

It is no place and no time in this paper to describe further tables for e.g. user-control, more thematical tables (such as POINT_INFO), or multiuser teehniques. Its is also no place to describe the indexes and clusters used by the ORACLE database to have a fast access to the data.

But we will only give a short statement above the time consuming of the above SQL-statements:

It is (much) faster to retrieve data from ORACLE with a query of the above type, than to read the same prepared datafrom afitle under WMS on a Micro-VAX.

5. WHY DOWE USE ORACLE?

First of all, we have choosen ORACLE as our favorite, because it is a great and well known company in the field of database systems.

Second, the ORACLE database is a strict relational database with standard SQL-interface. Also the availability on nearly all hardware- and computersystems is very important for a portable system. So you can change the hardware or use a greater machine without problems.

It was also very important for our project to have several programming interfaces to nearly aUJ commonly used programming languages. A special advantage of ORACLE are the Precompilers, so you can use the known SQL-statements without ehange in a Fortran of Ada program. This feature speeds up the programming of database using procedures dramatically.

6. CONCLUSION AND ANOUTLOOK TO FURTHER DEVELOPMENTS

We plan in the nearer future the use of a Vax-cluster, with a distributed database, divided into local and global data. Local data is hold in the workstation, global data is stored in a greater
central machine. For the user this comcept makes no difference to the old one, because the database manages (unvisithle for the user) the datatransfer and storageplace.

IIt is also plamed to use this soffuware package on a heterogen net, e.g. the IMAGE-programs on a Vax-GPX and the database e.g. on a UNIX-machine.

References:

[B_{1} 代	Brliekler Helmut, Brückler Eva
	IGIS-Datenbankkonzept unter Verwendung von ORACLE V 5
	Vortrag, DIBAG/FGJ, Graz, Feb. 1988
[[RRA]	Frank A.
	Datenstrukturen für LIS, semantische, topologische und räumliche Beziehungen in Daten der Geo-Wissenschaften Inst. f. Geodasie u. Photogrammetrie a. d. ETH Zürich

[MEI] Meier A.
Methoden der graphischen und geometrischen Datenverarbeitung
Teubner, Stuttgart, 1986
[ORA] QRACCIEW55
Manuals
ORACLE Corporation, 1987

Photogrammetrie Engineering and Remote Sensing
American Society for Photogrammetry and Remete Sensing
Falls Chureh, USA, 1987
[SPA] Proceedings of the
International Sympesitum On Spatial Data Handhing
Vol: 1 andz
Zurich, switzerland 1984

PIGALLEX, AN IMAGE AND TEXTUAL DATABASE MIANAGEMIENT SYSTEMI

Kópháź József, Molnár Csaba
Computer Research Institute and Imnovatiom Center

Budapest

Abstract

We introduce in this paper a new PC-software namely PIGALLE (electronic Picture \& text GALLEry), that integrates large volume, free-format textual and medium resolution true colour pictorial information into a complex database for later intelligent retrieval. Employing effective database-handling and image-compression algorithms, PIGALLE offers the user a large amount, valuable and well-struetured information. PIGALLE can handle numerous input peripheriais, e.g.xameras, scanners, ultrasonic scanners, and output peripherials, e.g:WORM, plotters, displays and so on. Due to these rich information sources, elegant displaying enviromments, and the high capacity anchivation media, PIGALLE may serve a wide range of applications in medicine, education, culture and industry.

KEYWORDS. Database management, Image Compression.

1. INTRODUCTION

In recent years the appearance of "last" PC"s and some new personal computer peripheriais makes it possible to develop revolutionally new systems which were previously available only on mainframes or at least on miniconputers. Two types of peripheriais are intenesting for $u s$, the frame grabbers and the optical discs. The frame grabber is a plug-in module of a PC, which enables the user to capture an image, more precisely a frame generated by a standard video equipment such that camera, video tape necorder or angiotron. Then the image is to be sampled, digitized, processed and stored. In this way real images become attainable by personal computers. On the other hand, the high capacity optical dises makes it possible to store and man-
age effectively the lange amount of data generated by a frame grabber. On the base of that hardware elements new database management philosophy and database management systems have been developed. We are to draw attention to some problem of this topic, and to outline our solution which has found shape in a real database management system. PIGALLE In the second chapter we give details the problem of image capturing and compression in order to be able to store a lot of good quality pictures. In the third chapter the structure of the mixed database and the knowledge base will be outlined, and at last in the fourth chapter the natural applications will be listed.

2. ABOUT IMAGE CAPTURING AND COMPRESSION

Images can carry a lot more information than textual explanation. Taking a quick glance at a picture may often tell the observer more than reading through pages of written description. The trade-off is the relatively long time and enormous dise space consumed for electronic processing and storing of images. A frame grabber usually converts the monochrom analog video frame into a $512 \times 512 \times 8$ bit digital data. The true colour video frame is converted into a $512 \times 512 \times 24$ bit digital data. Even if a high capacity storage media could be used for storage it desirable to compress im. ages in light of the following standpoints:

- the cost of storage, which is in direct ratio to the size of data should be minimized,
- the time necessary to display the image has to be subjectively acceptable.
- the quality of the decompressed images is expected to satisfy the demand of possible applications,
- the hardware requirements of displaying the image be as cheap as possible.

The redundancy contained in the natural images offers the possibility of compression. Numerous compression algorithms are knowm, but only a few satisfy the requirements listed above. We have chosen two base algorithm, one for camera images and one for scarmed images. The first is a block-code which converts constant length blocks of the picture into constant length blocks of the code, independently the actual value of the image. Consequently the rate of the code which is the ratio of the size of the coded data and the original image is constant. The trade-off of this coding method is the image distortion, the advantage is the good compression ratio and the very simple decoding algorithm. The second one is a variable length code, which associates variable length codewords to variable length blocks of the scanned image. Of course, the rate of this code varies in a wide range, depending on the images being encoded. The advantage of this method is that the image can be decoded without any distortion, the trade-off is the relatively complicated and slow decoding algorithm, and the variable rate which may cause buffering problems. In extreme case the compression may result increased data. In the following we explain in detail the characteristics of theese algorithms.

2.1. TRUE COLOUR AND MONOCHROM IWAGE CONPRPASSSION

The Storage capacity needed to archive $512 \times 512 \times 24$ bit digital true colour image without compression would be 768 KBytes, and 256 KBytes for monochrom image. PIGALLE compresses theese datas to 66 KBytes and 32 KBytes respectively, which means 12:1 and 8:1 compression ratios. During information retrieval the coded data may be decoded and the restored picture will be of slightly lower quality, that is hardly noticeable visually. The coding algorithms consist of two steps. The first one is a version of the so-called block trumeating coding (BTC) algorithm, which can be considered as a moment-preserving, local quantizer. This means that the picture is divided into blocks, each of whose pixels are individually quantized to two levels such that the block sample mean and variance are preserved. In the second step the gray levels for monochrom images and the colours for true colour images are quantized in the following way: We illustrate the method for true colour images. The three dimensional colour values appearing in the locally quantized image are considered as points in the three dimensional Euclidean space. Then the space is splitted into disjoint cells, and a representative element is chosen for every cell. All the colour values contained in the same cell are encoding into the representative element of this cell. More precisely, the two colours of a block are encoded by the indicies of the representative colours of cells containing theese colour values. We have sketched roughly the coding method which consisits of numerous "litfle algorithms", but deeper explanation is not possible here. The interested reader can find much more details about theese algorithms in the literature (see ref. [1-4]).

As an option, PIGALLE has two encoding functions.The first one combines the two steps sketched above, the second one uses only the first algorithm. The first funetion is more economical, as the imformation requires less space to store, and the decompressed image can be displayed via a single frame grabber, as it contains only 256 different colours. However, this also means a significant loss of color information which is visually noticeable in most cases. The second, not combined method nesults in a code file 1.5 bigger than the first one, and thnee frame grabbers nust be installed in order to display the decompressed picture. The loss of information in this case is less significant, most times it is visually umnoticeable.

2.2. COMMPRRESSSONN CF SSCANINIED, BHNMARTY IIMAAGESS

Two level, scanned images can be imput via a 200 or 300 dpi scanner. The storage requierment depends on the actual resolution. PIGALLE applies the CCIHT T,6 standard coding/decoding method. The compnession ratio waries between $1: 2$ and $1: 30$, without amy loss of information. The actual ratio is dependent on the original inage,

3. IDATIABASE NMANNAGEMENTT IIN PRIGAUUE

The primary goal is to make the data accessible to a particular textual and conmected pictorial information from a lange wolume database reganding WORMS and CDIDONF lange storage capacity and their special physical features. Inst of all it Heeds a stiuctured database including documents -article texts, pictures, encyelopedie entries wetc,- dictionaries, indexes. On the other hand we need a filing system for handing these information both on magnetic and on optical storage nedia optimally.

3.1. FILING SYSTEM

There are two essential standpoints for an optimal filing system in such applications;

- Because of textual data entries the length of an index key can be varying between wide range.
- The applicable indexing techniques depend on both the needs of changes and on the storage media. While in dynamic databases, tree structures, such as Btrees hawe been used as indices because of their ability to handle growth, in melatively static databases hashing has been used for fast access. Because every picture entry even if it has been compressed increase the size of database in much more degree than other connected information, therefore picture file resides on optical media during database building, make possibility of more disks pictorial database, and all other data reside on winchester. PIGALLE use a B+-tree indexing technique, handling variable length records and index keys. User can define the order of characters for indexing, matching it to any national character sets and alphabet-r-
3.2. DATA STRUCTURES

The database of PIGALLE is made up of three logical units:

- Text base (documents.articles);
- Picture base:
- Knowledge base which defines dictionaries, the relations between them, and controls access to the actual contents:

Dictionaries:

- Title dietionary:

Each picture and text element has a unique title which identify directly all entry in textbase and in picture base. The simplest form of retrieval is browsing through this dictionary or its subset matching a mask.
$=$ Descriptor dictionary: Descriptors are all of "important" words, expressions which a document can be identify with. They carry the most important information for logical data retrievil. Unlike the titles, the descriptors, however, are more than simply a collection of words and expressions, the logical structure of the database can be define by them
= Synonym dictionary: Synonym of all existing descriptors can be defined in this dictionary, and these symonyms will equally be included in the search for the original descriptor = or vice versa An existing database can thus have multiple query structures by providing symonyms.

Data retrieval uses the connections between database entries. This partly means direct connected elements to a document (artidede/picture) such as its title, connected other tifle, its descriptors, abstract. On the other hand it means logical connections between these elements (descriptors) recorded in knowledge base. Descriptors can be amranged in many logical graf structures similarly to "Thesaurus" techniques. Any of them may be marked as group descriptor. Group descriptors, as their name suggests, nfer to other descriptors, which may be group descriptors themselves as belonging to one logical group. This result in a logical structure of groups and subgroups of descriptors, which serves muiltiple purposes:

- To meet the needs of special user applications, the logical structure of the database can be defined before entering the actual data (articie/picture). This speed up data entry make possibility of automatic descriptor selecting and indexing as the text is appended to the database.
- The structured access to the descriptors eases data retrieval as well, as it offers all query options related to a given subject when selecting the concrete search creteria. This is especially useful in educational applications, or when retrieval is based on broad, general points of view.
- The structure of the descriptors can be modified, reorganized at the time of data entry as well as in a separate maintenance phase. This way the same database can reveal various intemal logical relations.

3.3. DIATA R RETIRHEW/ALL

Two important questions must be answered before retrieving information from such databases. Firts, are you retrieving text data or documents? Retrieving documents is generally less precise than direct data retrieval, and there's no telling if you'll find the right answer to specific questions such as "What is the second largest river in South America?". From this viewpoint PIGALLE has a document retrieving system The second quiestion to be considered, "'will the retrieval software be geared toward browsing or searching for documents?". Searching is most often used because harmesses the power of data's efecironic nature. You can search for various word combinations and, with a property indexed database, the software will quickly find the documents that contain them. Then, you can peruse those portions of documents that are likely to contain information relevant to your search. Browsing, on the other hand, allows you to enter the database at any point and view documents on the screen. Seandhing moves from "wwat" to "where" (as in what particular word combination is located where in the database.) Browsing moves from "where" to "what" (as you browse in a particular location in the database, you want to see what information is found there [7].) PIGALLE offers both boolean search (you can search for descriptor A AND descuiptor B, or for descriptor A OR descriptor \mathbf{B} or its combinations) where also any logical dessaniptor-tree structures can be used for building up searching mask, and brouse function in the title list, either in selected parts by searching, or in entire title dictionary (see nef. [5-7]).

4. APFHUCATIION MREAS

At last we list some of the application areas where PIGALLE can be used suecessfully:

- Maintaining product-catalogues, visually keeping track of spare-parts, documentation in trading, manufacturing or design companies.
- Filing and combinining X-ray or ultrasonic images with additional information in order to support medical diagnosis or simply to build up client history.
- Creating educational materials, where the pictorial information is combined with textual explanation.
- Cataloging, documenting, archiving precious objects in museums, galleries...etc.

REFERENCES

[i.0] E.J.Delp and O.RMitccheell, Image compression using block trumeation coding, IEEE Tr. on Conmum, vol. COM-27, September 1979.
[2.] P.Heckbert, Color image quantization for frame buffer display,SIGGRAPH 1982., Proceedings, pp. 297-207.
[3.] D.R.Halversom, On the implementation of block trumeating coding algorithm, IEEE tr. on Conmm., vol. Com-30, November 1982.
 berg and D.J.Sandedin, Two bit/pixel full color encoding, SIGGRAPH 1986., Proceedings, pp. 215.
[5.] D.E. Knuth, The Art of Computer Programming, Vol.3. 1973.
[6.] C.S. Elliss, Concurnency in Linear Hashing. ACM Trans. Database Syst. Vol. 12 No. 2, Jume 1987.
[7.] B. Brewer, The Look and Feel ... and Sound of the User Intenlace. CDROM Review July/August 1987. pp. 26-31.

LIMITS OF LOGIC - COMPUTER EPISTEMOLOGY *

T. Vámos
Computer and Automation Institurttes, Hungarian Academy of Sciemcess,
1132 Budapestt, Victor Hugo u. 18-22., Hungary

Abstract

Abstiract. This paper discusses why the analysis of our limits in knowledge representation and world comprehension is so important in our electronic information age and why the very ancient basic problems of philosophy are returning at a new levell. The problems are divided into three related areass: uncertaimity, logic and languagre, which all direct toward the complexity issue. The logic theme is discussed in more detaill. Last, some approaches are indicatted.

NEW RELEVANCE OF OLD PHILOSOPHICAL PROBLEMS

Abstract

Ancient Greek philosophers realized the difference between the real worlld, our perception of that and the way how people can express this, communicate the perception of realitity., The same basic problems returned at any revolutionary achievement of discovering new facts, relations of nature and at each revolutiom of conmunication technollogyy. Science is the history of science itself, this was the idea of Goethe and the New Paradigm concept coined by Kuhn on the turns of scientific methods relates to these revolutionary variations on the same theme.

Computer and communication age provided a radicall new and necessary look at this triplet of world and knowledge representatioms. We represent our perception on reality in a machine program which reacts to our reality in a reall time mode or at any rate in a more and more uncontrollable wayy. This uncontrollability lies in the exorbitant complexity of reality and exorbitant complexity of the programs themselves much beyond human comprehemsilion. Emergency management of nuclear power plants, other large scale highly dangerous processess, monitoring of respiratory and other vital functions during a criticall operatiom, dangerous maneuvers in aviatilion, decisiom processes in highiy complex economic and social systems are and will be more and more supported, automatically controlled by knowledge-based systems. This means that the investigation of all possible relations of reality and representations was never before as cruciai as now. We encounter this problem as our professiomall

^[* To appear also in Proceedings of the 6th IEEE Internationall Workshop on Languages for Automatilom.]

responsibility in a period when the scientific and software market is fuli with overstatements of possibilities and the pubiic opinion generaily underestimates its relevance for the near future.

Using the idea of Teilhard de Chardin that the animall knows it but does not know that it knowss, we can add that it does not know what it does not know. As human verbalizatiom of experience started, the eariy beliefss, origins of religions did just that:: extrapolated all unknown knowledge to totems, spirittss, Gods etce. Writing enforced a much more consistent mapping of knowiledigee, conceptuallizattion, relational connections - after a long progress came a rapid flouristhing, this was the acme of the ancient Greek philosquhyj. The cognition was used within a small circie of erudited people and mostily for purposes which were not in direct contact with the practical life. Printing distributed knowledge among broad, physicaliy less related commumiltiless.. simultaneousily achievements of natural sciences in a practical framework of scientific methodalogriess, metasciences promised an unilmited possibility of comprehending and mastering everything. The realm of unknown was visibly shifted towards the horizons of unlimited infinitty, the Age of Reason supposed to enable mankind mastering the Totaliltyy. This overlook of a historical trend is of course a terribly superficial sketch and a one-sided interpretariom of contradictory, fluctuating and long processess. It is used here as a hint, indicating the intrinsic relations of representation methods and human thinkilmg.

Progress of this century"s natural sciencess, mathematics in paraliel with their enormous results have indicated severail. limits of knowilediges, bounds of the comprehension of human mind, faced with the complexity of nature. We shail not get into details of this subject but more into the other side, how the representation of knowledge is limited by representation methoals used by our computerss. This is our new and practicaily very relevant relation to our knowledge about our knowledgee. A clear confrontation with these facts provides a research program, direction of extending representation methoriss, circumvention of difficulltiless. This attitude is just the opposite of the primitive man firightened by the realm of unknown: it is a conscious and dignified position to contrast with the neoprimitive irrationalism and its counter-partt, the arrogant simplistic rationalisim. Ali these evolved to primary importance as these representations intruded into any of the human activittiess.

UNCERTAINTY AS A BASIS OF OUR UNCERTAINTY

The problem area can be treated in three interfelated topilcss: uncertalunty, logic and languagee. Uncertainty cam be taken as the first one because it mostly refer to the sensory/, experimemtanl input datal. The development of humam thinking on uncertainty is the subject of other occasiloms, we mention only a few consermss.

It is not by chance that the concepts on uncertainty had a very siow developnent, from Aristotle who described a possibilistic
modalinttyl, through Occam who was thinking about naturall propensiltiles, to the great philosopmers,, natural scientists of the Eniightenment and to Kolmogorov who gave a classicall framework for probability but felt also the need of further refinements in his last papers.. statisticss, probabillitty, all direct to infinity in the number of events and based on their original models first only to a definite number of possibilities in an eternal unchanged worlld.. As this is not the real case, abstractions are mostiy weak models of the eventss, the role of human belieffs, subjective classificattionss, hypotheses should be inciuded into these theoretically pure concepptss. Even the validity of any certain implication of past experience is questioned for the futwre, this was also a topic from ancient Greece to the paradox of Nelson Goodman nowediayss.

In the light of the criticism regarding interpretations of uncertainty and conclusions drawn from not definitely related but somehow corresponding eventiss, we can understand the unsolved quarrel among tenants of the orthodox disciplines in statistics and probabiliritty, the neologs as the Shafer-Dempster theory supporters or the heretics as advocates of the fuzzy conceppt. It is worth to mention that the first notion of the modern idea of minimax consequences developed by Wald and Neumann with some empathical interpretation can be traced back to Theophrastos, a pupil of Aristotile: "Conclusion follows the weaker part."

Our problem is similar but much more acute: we put unreliable data about vague events in our computers, translate human verball estimations, beliefs into uncertain qualitative gradings and try to apply consequence algorithms for the unification of these vague events on the basis of these uncertain data to predict future consequencess, we face a hardly or totalily not perspicuous complex because of all these and finally draw brute force binary decisions over this mess..

CONCEPTHALIZAATION, THE FIRST PITFALL IN LOGIC
The first step of any logical procedure is (land has been in history of science) conceptualizatilom. The Aristoteliam categories are direct ancestors of our typess, classess, objects in different programming languagess, the weli-defined relatiomal dependemces, the topos of type declaratioms, frame and semanticconceptuall nets. The notion of inheritance within a conceptuall frame was also familiar,, semantics as hermeneutiless, the science of meamimg, interpiretatiom. In this respect, not too much wals added, only refined. Denotation started also with Greek sciemce, a more coherent methodology had to wait until Leibniz and Frege. Investigating relations among concepts and items, the syllogisms provided an analog tool as our IF...FHEN construcut, used in every rule-based system. This was the modus ponens or, by the ingenious mnemonic of Middie Ages, the Barbara-alldorituthm. The other important syllogissm, the modus toilens (Celarent)) leads to our refutation algoritthms, to the resolution principle and nonmonotonic logic counterfactuals. As Zeno of Elea formulatued:: reduction to impossibiles. The metacomeapt, rules about rules.,
hyperstructures are also results of this fantastic period of human awakening of consciousmesss. It was realized very early and inciuded into the works of Aristotle that those concepts and syilogistic relations are context dependent. They analyzeed, separated the truth of premises and relationss, distinguished the essential fatures of a certain instantiation (as we say: they refer to it as first substantial)) and that of the conceptruall nature of the same (second substantiall)) - some later ideas of limited, conditional inheritamce. Creation of hierarchicall conceptual structures was a widespread logicail game realizing the concept of accidentall categroy, the relativity of all that. similarly we find these different aspects of conceptualization in Thesaurus-organized dictionaries (Webster,, Rogett, Longmarns, Pictorial-Dudem).

The usualiy cited examples of pitfails in conceptuail thimking, generalization and instantiation are the oistrich and the penguilm, i.e. birds which do not fily, the penguin has no real wingss, the whale which looks and swims alike a fish but is a mammal.. These are simple tutoriall cases but emergency directives of a complicatted, dangerous plant can be extremely controversilall in different situations when some part of the system is out of service or the antecedents are different or any other reasom changes the order of risks.. Similar can be a medical procediure, considerations on contraindiicaitionss, risks due to different situations, investigation strategies etc.

MODALITITIESS, THE SECOND PUZZLE

Most important was the discovery of modaliltiless, i.e. different reasoning ((syllogism)) under different contextual relatioms. Aristotie distinguished three:: the necessary (apodictic)) which is our regular rule form in simple expert systems; the possibililstilc; and the contingent one which permits coincidemesess, somehow directing to our patterms.. This contained the fine distinction between something which is possible or probabile.. In our systems these are transferred as probabillistilic, possibilistic logic, belieffs, certaintiless, contingenciless. A significant part of development during the whole history until now has been devoted to the extensions of the modality conceptss, their appilcations to special fields of reasoning (e.g.. legall, where relations are transformed to compulsory, permitted etc,)) and handing those differences which arise from problems of conceptualizatilom mentioned above. This will be explained further in more detaill, here we turn back for a moment to our task:: computer representation.

Anybody who is familiar with datal structures and operations on them can be easily imagine the implementatioms., We gave hints at every historical concept to the renamungs, computer-scilence vernacularss, buzz-wordis. This is all very simple for any short iliustration but opens bifurcatilons, ramifications at each openended uncertainty either in data or in conclusiom-pathos. The result is just as told before: either a short-cut which can lead to totaily misieading conclusions of a wide choice of outcomes
with a puzziing confusion-of their individunil values or both..

DIFFERENT WORLDSS., THE THIRD CONFUSION

An early understanding led to the conclusion that different relations, views can provide either a completely different but in ttself consistent picture of a situation of alternative choicess, values can create different situations which evolving in paraliell ean meet and confilet., Leibmilz, gathering from the accidentail looking human life, argued that God could not play with dice (an idea reformulated by Einsteim) but He created an infinite number of worids where every possible event and their combinations were realized. We are living only in one single variamt. The originall vision of Leibniz is an impressive hint to the computationall absurdity of any totallittyy. The idea of the necessary rationality of the world"s creation can be also followed from the Genesils, through ancient Greeks who supposed a geometricaliy thinking God (《rationalism was that times mostiy embodied in geometry)) to our latest cosmogoniall theories.. Our practicall point is the problem of limitation of this uniimitted. Modeliing a certain task-area we have to define these limits and the consequences of the limitation much more definite and reliable than any time before. We must be aware of the fact that the description of limitation is unlimited as wellil, if we would do it in a perfect way..

The idea of different worllals, resp. different world descriptioms, views returned with Wittgensteim and Kripke not long ago as they described the different world structures with the much cited story of London-Londres (la French boy who has a splendid Londres in mind due to his readings and by chance turns up in an ugly suburb of London and continues dreaming about that splendid city.)) The old paradigm of Bosporus-Hesperus symbolises the same. Essentially the same has different names for different agents and by that these worlds are really different, a source of contradictilomss. We all live somehow simillar, if somebody listens to a case told by differently oriented people.. Distributed systems are in case of some mismatch Kripke-stiructures, we shail return to this problem, speaking about the difficulties of dialogs, the effects of low quality informatiom. We can follow the responses of computer and information science and technology in deveiopment of interfacess, protocols and the difficulties of these even in relatively simple cases,, the alternative views on them.. The possible trade-बffis, compromises indicate the immense complexity behind all more or less realistic applicattions..

A relevant additional uncertainty is given by the Halpern-Moses theorem. They have proved that no perfect information can be exchanged between two partmerss, if the transfer of informatiom requires considerabie time. The paradigm is the coordinated attack of two detached generalls. This looks of course trivial if during the time required some unpredictable changes can occuar, for us it opens additional complexity troubless.

PARADOXES - CONTRADICTIONS

Eubuildes, diseiple of Euciid defined four basic iogical paradoxes which have relevant reies in our systems as welll: 1)) the Liar (保 he elaims that his breed is lyime then the truth is uncertain) ; 2) the Heoded (if he aiaims that he knows somethimg GRd it is apparentiy hidden, the truth is uneertain in this ease (20)); 3) the Baid, the heap ((having one singie hair or taking one grain of heap he/it is stili the same, this is true wilth two, three ete. steps - where is the iimit of the true statementrn): the Horned (ifif somebody did not loose his hom, should be horned?). The Liar-paradox is the most significant one. It is the same what we cail self-reference and it has benevolent ancl a malevolent version. The first is the case when a system prowides a reference ("it is to my left")) which without further exteman reference remains ambiguouss. Malevolent is a system which ciaims to teli something about its truth and this remains ambiguouss. The case is realistic in intereonnected systems where each inditidhral system should rely on the correct operation of the otherss, the data issued by them.. Considering the difficulties of program and hardware verification we can assess this pitfaull. The votimg problems of the space-shuttle computterss, the future of SDII software, reliable services of networks are typicall cases for that. The self-reference problem is one of the deepest of logic illustrated by several ingenióus paradoxes and has differemte aspects, some closed systems permit to use it withoutt harmfun consequence, others lead to apparent contradilettioms. From our point of view this is an important practicall warnimg and avoidance leads to an increased complexittyy.

The hooded paradox returns in the self-explication features of expert systems, the Bald ((Heap)) in the definitiom of possibilistic-fuzzy limits and reasoning procediuress. The Horned diraws attention to sensitivity due to presuppposittitoms, a typicall problem of expert system design in complex cases.

Contemporary conclusions are very disappoilntiling:: Hintikka speaks about the need of a logical omnisciencee, Konolige about the requirement of a consequentionall closure. Botlm defime a limitation to an unrealistic situation whildh, pursuing the sequence of paradows, is unfortunately the only realistic approach. We meet the unavoidable compromises in any computerbased system.

LOW QUALITY INFORMATION - GIGH QUALITY ELECTRONIC ENCYCLOPPAEDIAA

An obvious corollafy of all uncertaimitiess, limitatioms detailed above is the unavoidable fact of incomplete information im amy complex case. The situation is mostly worse:; the human agent as imformation supplief is usually a low quality resoupros. If the system impresses its logic on the humam paftmerr, avoidgs amy new approachess, then the system and its activity is not reallyy intelligemt. In a free discowfser, the system not only intefprets the Information given by the agent but it has to festofe a possibly complete and consistemt Information om the woflidill
eancerned. Naturai language understanding is oniy one, but still. hot sufficientiy solved chapter of the task. One approach creates (and backs up) two digtinct models: that of the agent and the Qther of the subject. The combination of the two can proviale a more reliable pigture of the asse.

This is an extremely important praetical issue. A dialog between a doc and the patient, any commuication between an expert and a hayman is an instance of the generai problem and this is one of the basic paradigms of future man-machine systems woridal.

The addition of nonvarbai information is another side of the same problem. We have no generai method for one to one transformations of varbal or pictorial morphologicai descriptions as for piants, objeats of cytoiogn, faces, figures etc. The representation of other sensory data was also an original Aristoteiian probiem and later of many great philosopherss, we hint oniy to Descartes' Trait de 1 "homme.

We have been speaking for a time about the third component of complexity - uncertaintiy/: about language. Relations of logic and language are 'pirimewal, here we put emphasis on logic; language more detailed is another occasilion..

On the other hand, a revolutionary high quality informatiom source is evolvimg: the hypertexts over an electromic eneyciopaedila.. High-density storage equipment makes available a complete library of a very broad knowledge base for immediate limformation retrievall. Handling this, creating associatioms of remote litems is a much more demanding process tham any of our recent intelligemtr, relational data base managementss. If this is done to a certain extent in real time operattiom, the low qualitty muman imformation and high quality knowledge base cam create a new, very efficient symbiosiis. As we see later this is only a step further in approaching something of the human intuitiom butt it is a helpful support.

NEW KNOWLEDGE - DISCOVERY

We reached a transition to an old question of possible machime intelligence: can they imitate the human intellect of evem do some more? Much before the well-known idea of Turing about a manmachine test procedure, Descartes described a simillar one contemplating about the same. From our point of view it is not so important to speculate about computers having emotioms of viewss, feelings about themselves, the self=reference problem was trearted here also in a more practical wayy. Basic for future and contemporary assessment of expert systems would be the abilityy to create new knowledge. First it is to be defined what is new knowledge. A calculation of a number of speciall conditioms (e.gy. a key in cryptogirapliy) is also something new but this cappit be imcluded into AI, if it is not a result of a new, computergenerated algorithm. This notion is nearef to what we understand as discovery although several authors misused this tefm as welly, claiming too much for theif mofe of less heuristic seafeh
programs within a well=organized discipline.

A rough ciassification can help us to get a clearer insightu. There are discoveries which preserve an earlier scheme of the problem. Finding some inconsistencess, new facts which do not fit into the scheme, trace by backtrack to a node or a subgraph composed of a few nodes of the scheme, which can be a culprit for contradiction and then replace this by new datal, rules, aigorithmic parts.. This is the way how nonmonotonic logic works in our expert systems.. Any extension of theory (e.g. the vam der Waals equation from the Boyle-Mariotte gas-dynamics lawh, of silghtiy the specific theory of relativity)) preserves most of the other pqratrsis ofofthbe scchme. Tinse other evem more exciting procedure is the chmanger coff the ggemerral ssollemme off ad theory/, something whatt wass cocotimed tay Kulmon as new paradtiogm. The general theory ofreratiatitusi, ty, thehree anchinsmism of genetic materilaul, the theory of mathematics are typical exampless. This is mostily based on some sililarity intuittion, usually postulating very far fetched, unexpected anailogiess, as a heilx of DNA and of a staircase, i.e.. similarities of structures, externail forms, darta, situatiloms, syyorowysinch cantomyms. Mss far ass our machine systems have developed until mow, thits woulled be al practiceallily ettermal search for a machine on an unlimited field of combinations but as we could indicate with the intelifgent electronic encyclopeadila it can be a very promising man-machine cooperatilom. The same
 procedure reachesthethrimitrsisi tosf of complikeitity amdd ddess nowt really repiace or imitate the human mind but it can amplify our capabilities by a wise partnership concerning limitations on both sides.

LESSONS OF COGNITIVE PSYCHOLOGY

Logic endeavoured from the very start to formulate human cognittion.. In its struggle for a superior reason - weapon against the irrational evils of human life, it long neglected any other methods of cognition or have let them to be the territory of the other, nonprogressive part or at least exciuded from sciences, separating it from the arts.. It was realized by psychology thatt, due to our aeons long phylogenetic evolution patterms., Gestaniltss, schemes, i.e. somehow coherent data in our memory have a much more important role in our mental actions as logic. Even those creative activities which are considered to be the most logicall ones are not based on logic but just on those patterns as it was proved in chessplaying or discoveries in math.. This is just a separating indicator of medium level professionall from the performance of a real talent, the first uses about 2000 of those schemes in his/her daily professional actilwiltyy, the latter 10100 000!! How are they orgemized, what kind of hyperstructure do they have, how are the main features extracted and stored, filtering the less important? - this is rather mysterious till now but they are in the focus of recent research..
We are sure that finding some features of this fantastic heuristic would be very rewarding for our machine-based systems as wellil. We have two projects in different fieldis, in a special
eariy brain development medical topic and a legal decision support,, based on precedents.s. The intuitive reasoning methods of the experts on the field are our challenging objectimes. We try to find approximate metrics of those very complex spaces of events, measures of similarittiess, conceptual clusterimgg.

HOW EAR?

We started with reference on overstatements and underestimation. Let us conclude with impressions of the recent situation with no predictive extrapolations - the future is always a surprilse.

In spite of more than two decades of ingenious and hard, extensive work, AI and expert systems did not reach a level as it was foreseen in the beginning and is claimed by some aggressive advertisements till now. They are either in a state of demonstration and experimentation or used as tutoriauls, guidance for non-expertss, putting limited systems in more perspicuous ways.. They are more helpful in problems which are basically combinatorial and relatively easy to estimate. Here, that range of possibilities is used which lies between the limits of a human sight and the combinatorial explosiom, e.g. the cases of computer configuration or molecular structures. This range and the whole progress is very valuablle, cannot be neglected in any future developmente, but we have seen limits which indicate frontiers set by complexity where the number of calculations is practically unlimited, these are the NP complete problems but the polynomial ones also, if it goes to high numbers. Amdaml"s Law reminds us to the fact that high parallelism or accelerations by one or two orders of magnitude cannot be helpful in those very complex cases. Our endeavour was just to hint to the deeper reasons of that..

This should not be demobilizilmg. Efforts are going on just in those two directions what we mentioned at the discovery topic. A steady-state effort broadens the potentials of algorithmic procedures defeating complexiltyy, turning NP problems to P and P to Nlogns, approximations witht better estimations of errors are invented.. New computational and reasoning paradigms are launched which attempt to bypass our present limitatioms. Being aware of these limitations is an important step itself and a move towards more efficient man-machine systems.
V. 1

W

A PARADIGGM OF LOGIC PROGRAMMING AND ITRS IMP'ACT ON LOGIC IROCGRAMMINGG ILANGUAGEDS

Miklõs Szōts
SZAMALLK Appliad Logic Laboratory H-11502 Budapest 1122 P.O.b. 146

Abstract

Abstracit. This paper presents a general paradigm of logle programming. It is shown that it covers all the used and proposed logid: programming languages, moreover in several respect it can control the developing of further languages.

Keywords. Logic programming, semantics, inductive, definition, search spacee.

1. INTRQDUETLON

Theorem proving sysitoms, including logic programming languges, at an abstract level can be described as proof procedures that is triples of

- the set of formulae to be processed (syntax),
: the rules of inference, which can be applied (calculus),
: the strategy, which controis the applications of the inference rules. In the case of logic programming languages syntax is the set of the logic programs.

Here we present a paradight of logic programaning characteriling the proof procedures which can be considered as programming languages. This will be done in section 2. We omit deep mathematical investigations. After setting down the mathematical model of the constituents of logic programming languages, we try to point out the practical consequences of our paradigm.

Before separatilng logic programming from theorem proving in general, let us face another questilon. Since the definition of every programming language can be forced into the sehema of proof procedure, we also have to separate logic programming languages from programming languages in general HKowalski 1984. This separation is based not on the three constituents of the proof procedure, but on a fourth factor: on the existence of the declarative semantics. If meaning is attached to programs in a precise, mathematical way, independently the executions of the programs, the programming language can be considered as a logic one.

2.11 Loszios. mrograrns

Formulare considered as logic programs are Interpreted in one, fixed, constructilve relational stimcture. The simflarity type of this structure is said to bo the biisic similaritgy typen. Being constructive precisely means that the model meets the following condition is:
(i) Jhe carrier of the model is generatod by the constants that is, each element of it can bs named by some warlable-firee terms. There is a canonitcal name amone the names of each element.
(ili) All the relations (lucluding the equadituy) of the basic similadity type are computabule that is, the truthovature of every atoradif formula is decidablale.
(ilii) All the functions of the basic sifnilarity type are computable that is, one can find the carionical name of an element named by al wadable-freee tenm.

Such models ade said to be H -models.
A program in an h-model is a set of definitions of certain relations. Belng able to refer tos these relations we need new relation stymukols ri,...she (with aritics wi,...thin respescitivelly) which arde now includad in the basic similarity type. Thelr definitions will be of the forita $r_{1}(x)=a_{1}(x)$. From now on symbois in will be called as defined symbois and formulae ois as defining formuiae. A sel of definitions willif ailso be called as defindition.

Let A be an arbitrary but fixed y-model and let us consider a definition $\Gamma \equiv\left\{r_{1}(x) \sum_{1}(x): i=1, \ldots m\right)$. We say that relations $R_{i, \ldots}, \ldots R_{m}$ are defined by the definition r or the tuphale of these redations is a Plxpoint of defindrion f if inodel 〈A, R1,..RRm satisfiles definition f, where each predicate r_{1} is evaluated to relation Ra. A defindition can define no relation if for an index i the formula $r_{1}(x)$ mar $\boldsymbol{o l}_{1}(x)$ is unsatisfiable. in genedal there may be several m-tuphles of relutions satisfying a defindibon. Regarding a definition as a proggram, we want to atitach an unambiguous meaning the definition. In other words, the existence of a least fixpoint is a basic semantic demand. The elass PE of the following defintion meets this condition.

The class PE of positive existential formulae is the least class of formulae satisfying the following e:onditions:
(i) quantifier-afree formulae of the bashic similarity typue belone to PR;
(il) atomic formulae of the form ra(iti....tint), where th, ...time are terims of the basic similarity type, belong to PE;
(Hil) PE is closed under connectives and, or and the existential quantifler

In other words, a formula belongs to Pe if it does not include anty universal quanthifer:, and negation can occur only in quantifler-fhee formulae of the basice similarity typae. A definition is said to be PE definition if aul its defining formulae are PE formulau. The choice of PE definitions for logic programs is based on the following theoreans (see [Szöts 1986]]):

[^12]? The least fixpoint can be obtained as the limits of the following semtes:

* Let A be an H-model with infinite universe. In this case
(i) Least flxpoinis of PE defindtions ade recursively enumerable relations in 1 .
(il) All the recursivenly enumarable relations in A can be defined by PE definitions.

It is clalmed that logic programs are PE definitions. Really this is true only up to equivalenca. However, equivalence here does not mean semantic equivalence, but the equalliyy of least fixpolnt and of the construction of the least fixpoint. As an exaraple: equidualence symbal in the definitions can bo changed to implication, as it is done in programming with defindie clauses.

2.2 Calculus

An execution of a logic program f (a set of PE definitions) is a proof of a PE formula o frotn f. The expression "proof of 5 from r" means that the wallidity of δ in the model 〈 A, R_{1}, \ldots RRm is proweed, where A is the fixed model, and R_{i}, ...Rm is the least fixpoint of F . The validits in one flxed model can be transformed into the semantilc consequence relation. Let $A x$ denote the set of quantifler-free ground formulae holding in A. The following theordan holds:

```
<an,,\ldots,_uni>e8Ni lff
ra(ail,\ldotsamm) is a semantic consequence of Ax Uf
```

In the proofs the elenents of Ax are not used as axions, the machinery representing the H-model computes directly the truth-values of the quantifier-ffeee formulae of the basic similarity type.

The main inference rule of every calculus belonging to a logic programming language is the unfolding rule that is substituting the defining formulae in the place of the defined relation symbol. It is a special form of modus ponens, only atomic formulae can be derived by it. This rule syntactically simulates the construction of the series providing the least flxpoints.
studying the question from a proof theoretic point of viaw, we found a restalction of the natural deduction systam (see [Prawitz 1065]), cailed PE nuturnl deduction, which is sultatble for deductions of PE formulae from PE definitions. It consists of the Introduction rades for connectives and, or and the existential quantifior, and of unfolding rule as the only ellmination rule. PE natural deduction has the pollowing propertiles:

* It is complete for PE deflnitions as axioms and PE formulae as theorem.
* The PE natural dedustion tree, the coresponding Gentzed sequent tree and the corresponding analitical tableail are isomorphic to each other.

PE natural deduction can be regarded as a schema for calculi of logic programing languages. However it does not mean that there cannot be significant differences between variants of PE natural deduction. The most important one lies in the treatment of variables bound by existential quantifilers. There is two distinct ways:
(a) substitutilng variable-free terms for the variables, or
(b) handiling bound vaxiabiles as meta-waribables

In case (b) the PE natural deduction provides systams of eonstraints, open formulae of the basilc similarity type, - which have to be solved to obtain the results. The method of sobution depends on the fixed model. in case (a) the leafes of the proof trees are ground formulae, - these have only to be checked in the fixed moalen.

We can also give a general characterisation of the search spaces of calculi:
(1) Within our paradigm the search space of a calculus degenerates to an and/or tiae.
(2) This and/or tree is deterministic in the following sense: the immediate successors of a node depend on the node onls.
(3) The search tree is closely related to the parsing tree of the formula to be proved. In case (b) it can be bulit up directly fron the parsing trees of the goal formula and the defining formulae.

The above features explain, why it is significantily more effective to provec in the variants of PE natural calculus, than in the general case. Point (8) seems to be the most important, not only because it automatically implies, the others, but also because it makes the proof procedure "transparene]. By transparency we mean that one can (partially or totally) wisualbize the whole process of proving formula knowing only the formula itself. That is why logic programming can be considered as programming: when one writes a formula (a logic program) he can adso regard the possible ways of proods (executions) of it, not only its descriptive meaning.

2.3 Some expansions of the paradigm

Here we point outu somer way, how the outlined paradigm caan be expanded
 hereditary finite sets [Gergely, Ury, 10888]) h. It, means that nat only tha elements of the universe can be refered to, bhuta also thedr finites sets, and finite sets of finite sets. Thils has not only theoretical advanteges, but helps discussing data structures and abstract data types [\$zöts 1087].
(2) The paradigm offer tools. for treating bounded universal quantiflemat they can be included into PE formulas. Furthermore a restricted usage of negation presents itself. New PE definitions for the negative llterals can be generated from the original definitions, and this way negative Ilteral can be deduced precisely the same way as positive ones. By this method negative literals with variables can be handlear. The adequate semantion can be given in three valued logic (in partial models) introduced in [Fitting 1985). The same flx point construction can be used as we use in 2.1.
(3) The implication symbol can also be added to the connectives forming a defining formula. It means that the introduction rule for implleation has to be added to PE natural deduction. The new calculus saves features (i), (2) of section 2.2, however feature (3) is lost in some sense. Such systemg are discussed in [Gabbay, Reyle 1084] and [MHler, Nadathur, scedroy 1987). In this case the familiar fixpolnt construction also prowides meaning to the logic programs, however they have to be interpreted in Kripke models

3.1 Existing languages as instances

First we show that the widely acepted pRoLog language fits into the presented paradigm.

In the pure $B R O L \& G$ the basic similarity type consists of the function symbols and the fixed model is the Herbrand universe with the functions interpreted in the naturial way. In practical PROLOG versions the arithmetical built-in predicates also act as relations of the baske similarity type. Note that our paradigm shows that these built-in predicates are not "impure" features of PROLQG. The predicates occuning in the heads of clauses are the defined symbols.

The PROLDG programs are but PE definitions - in nodmal form. The normal form is forced by the resolution princilples. Similanly, if normal form of the programs is insisted on, the PE natural deduction turns to SLD resolution. Thils is a good example of the interaction between the precise formulation of the syntax and the calculus.

The foundalion of the programming with definite clauses (Apt, Emden 1882n is a special case of our genes:al flxpoint theory. However their treatment is of syntacticall nature, and so it is conalesited to sidD resolution.

The SLD resolution is a simplified version of the PE natural deduction. Because of the normail form, the introduction rules are not explicite. The origine of SLD, the SL resolution uses lifting by metavariables, and so does sld. Because of the Herbrand undwerse, handiling of constraints turns to be simple: they can be solved by unification independently of one another. The unfolding rule combiner with unification provides the resolution rule for definite clauses.

SLD resolution is the only variant of resolution which could be the calculus of a logic programming language, The reason is that this is the only one which satisfies the conditions for the search space staterd in 2.2. The only resolution proof procedures satisfying (i)) are the linear resolutions, but even the more refined variant of them, the sL resolution is not effective enough, - as practice showed it. Even point (2) is weakily satisfied by sL resolution, since the ancestor resolution stap is deterministic. However, in the input resolution steap every literal of an input clause can be resolved upon. This uncertainty makes point (3) fall totally.

Let us see the different extensions of PROLOG. Since all of them keep the clause form, they similarly keep also the baske structure of SLD resolution.

TGhandra, Harel 18850 presents a theory of forn clause quenkes. There the basic similarity type consists of relationall symbols only. The fixed H -models are represented by relational data bases.

In the language EQULOG (see [Goguen, Messeguer 1984]) the bask similarity type also consists of function symbols only, However, for certain data type the carrier of the fixed model is not the frerbrand universe, different terms may denote the same elements. Therefore constraints cannot be solved by unification. It is supposed, that the most general solutions of equations can be expressed by terms. Again this presupposition heips to solve constraints independently of one another.

The paradigm of constraint logic programming (see (Lassez 1987]) realizes the importance of handilng constraints togather. There unfolding rule is separated from the solution of some constraints. PROLOG IHI (see (Colmerauer 1987才) can be cosidered as an implementation of constraint logic programming.

We In the Applited Lodic Laboratory started to realize a language called Lobe (LOgis of Bownded quantifiens), whicih gives up normal fomm of the definitions. It realizes the introaluction rule for existential quantifiles without using meta-variables (ease (a) in 2.3). The substitutions of termes is guided by the bounding formulate of the quantifiar:. Bounded universall quantifiler can be also used. About LOBD see [Szöts 188Af], [Gergely, Szäts 1985].

3.2 The moral of the paradigm

We think that the general paradigu, we present here, helps not onlys to classify and analyse existing or proposed logic programming languages, but it can also control the development of new ones. Having a clear theoretical basis can help to avoild ad hac solutions and to find the adequate one. Here we want to show two important features which can be derived from our paradigm.

The first is the principle of "programming in one roodel". The computing mechanism of a logic programming language can be separated into two constituents:
a version of the PE natural deduction, and
computations in the fixed modeli.
These can be considered as a higher and a lower level respectively.
The version of the PE natural dedaction is a universal calculus, while computing in the fixed model can be implemented independentily of any logic systitem. If meta-variabbles are not used, it only computes values of functions, and tests relalions, however in the case of meta-varhables the method for the solution of systems of constraints belongs here. Since the first constituent is undwersal, the same implementation can be coupled to different computational methods corresponding to different fixed models. This way open logic programming lalaggugges ean bbe develloped. This construction seems to be practical in the case of domain dependent languages. Then the functions and relations of the fixed nodel can be computed by complicated programs, and the logic component organises and coordinates the execution of these programs. The same logic eomponent can serve several languages.

The second feature is connected to the form of the programs. Dur arguments in section 2. clearly show that the clause form used in Proloag and in its relatives is totally incidental. The normal form has its advantages: the search space is regular, but also has its drawbacks: some subformulae have to be repeated. If one defining formula ls used rather than several implications, a greater formula can be handled by the calculus than a conjunction of atoms.

Because of the lack of space we could not expound the extensions of the paradign, therefore theild impacts cannot be discussad. However we want to note that the super structure (see point (i) in 2.3) ean help not only the adequate treatment of data structures but also of several other features of logic programming, like the e"set of" proadkate, percoptual processes and so on.

4. FINAL REMARK

Here we have reported some results of a project which aims to provide an adequate theoretical characterisation of logic programming languages. The project is far from being finished. Beside some theoreticical questions (like using higher orde logic) search strategy has not been even touched. The treatment of this component is one of the greatest problem in logic programming. Please accept our paper with thais apparent deficiency.

References

Apt, K.R., Emden, M.H.van [10822]
"Contributions to the theory of logic programming
Journal of ACM VOL 29 No 3 pp841-38622
Chandra, A.K., Harell, D. [19885]
"Horn clause queries and generalilsatibons"
The Journal of Logic Programming Vod 4 No 1 ppi-155
Cohmerawer, A. [190877]
"Opening the PROLQG MI uniwerse"
Byte August 1987 pp177-182
Fitting, M. [1085]]
"A Kripke-kleene semantics for lagic progarmming"
The Journal of Logic Programming Wol 4 No 2 pp2Q5-33122
Gabbay, D.M., Reyle, U. [1984] " N - PRROLOGG: An Extensilon og PBOLOG with Hypothetilcal Implications I" The Journal of Logic Programming Woll 1 No 3 ppilg-11555
Gergely, T., Szöts., M. [1985]
"Some features of a new loglc programming language" Proceedings of the Workshop and Conference on Applied Al and Knowledge-based Expert Systems ed. P. Revay, Stockholm, Norstedts Tryckenil AB
Gergely, T., Ury, L. [1988]] "Constructive base for piogramming and specification thoony" technical report of ALL, Budapest
Goguen., J., Meseguer, J. [1984] "Equallty, types, modules, and (why not?) genenics for logicc programming"
The Journal of Logic Programming Wol 1 No 2 ppi79-2100
Kurucz, A., Szöts., M. [1987]]
"A proof theoreticall foundation of logic programminge"
technical report of ALL, Budapest
Lassez, C. 1987
"Constraint logic progiramming" Byte August 1.887 ppi171-17766
Miller, D., Nadathur, G., Seedrov, A. [1987]
"Hereditary Harrop formulas and uniform proof sysitems"
Symposium on Logic in Computer Science pp98-10055
IEEE Computer Society Press
Prawitz, D. [1965]
Natural Deduction Almquist \& Wiksell
Szöts., M [1984]
"Comparison of two logic programming languagess"
Second Intermational Logic Programonig Conference
ed St. Tarlund, University of Uppsala

Szöts, M. H1986]
"A general first order theory of logic progratunimag" thesis, technical report of ALL, Budapest
Szöts, M. [19877]
"Abstract data types In Jogic programaning" technical report of ALL, Budapest

COMPUTER-AIDED GENERATIOS, PRESENTATION AND INTERPRETATION IN THE HISTORY OF SCIENCE AND TECHNOLOGY

Zs. Ruttkay! A. Márkus
Computer and Automation Institute
Hungarian Academy of Sciencess, H-1502 Budapesta, P.O.B., 63

Abstract

Although previous efforts have proved that computers can be used to store and retrieve the factual data about the history of a technical product or process, little attention has been paid to the problems of handling free-form data and to the means for filtering out the relevant informattiom, for arranging it into a sequential reportt, for browsing it in order to answer questions or gain hints for further data collectilom. Both the intellectual and manual aspects of compiling the factual datal into reports were entirely left to the human expert., The paper outiines the functional requirements a computer system should fulfili in order to meet the above-mentioned needs of historians. This weli-defined application domain is investigated as a foil against hypertext systems..

Keywords.. Hypertext systems., Knowledge Acquisittilom, Knowledge
Representatiom.

1..IMNLRODUCTION

Previous efforts of a Japanese-Hungariam team of historians and engineers in computer-aided history of technology have proved that computers can be used to store and retrieve the manifold and comprehensive factual data about the history of a technical product of process.. On the other hand, little attention has been paid to the problems of handling free-form data and to the means for filtering out the relevant data from the huge amount of informattion, for arranging it into a sequentiall report, or for browsing it in order to answer questions of geim hints for further data collection [$7,8,133]$.. Both the intellectual and manuall aspects of compiling the factual data into reports were entirely left to the human expertt.

Our aim is to work out a computer system to support the actuall needs of historians [4]. We have considered this well-defimed application domain as a foil against first-generation hypertext systems [$\left.7_{4} \eta_{1}\right]$]: : we point out those functionalities which cannot be provided by curfent hypertext systems.

In Chapter 2 a short account on the analysis of historiams' methodologies is givem, in Chapter 3 the functionall requirements for an appropriate computer tool are listed and contrasted to the capabilitiles of present hypertext systems.

2. METHODOLOGIES OF THE HISTORIANS

Relying upon wide scope of authentic sources and having interviewed historians of good reputatilon, first we have examined the specific features of historiams' methodologies and attitudes: how do they collect and interpret the informatiiom, how and for what purpose do they make inferences on it. Nothing proves the difficulty of these questions bettef than the fact that there is no commonly accepted handbook on how to wite history.

The interpretation of the available historical information is the reai ohailenge for a historiam, it requires intelligemce, creattiviltuy, some guiding prejudice but no pride; systhematic tests as well as luck; simple common sense and sophisticated experiemce; wide background knowledge on the soaio-political circumstances and a reasonably deep understanding of the specific scientific fielld, etc. The historian has to be sensitive to the sources, he has to be open-minded and flexibiles. He should not by-pass facts if they cannot be explailmed, of if they do not fit into his scheme. This also implies that history should form the historiam; by investigating more and more detaills, his methods and preconceptions might be continuosly changimg.

On the other handi, historiography should meet overall criteria of scientific cognitilion, e.g.: a theory should not contradict true factual data, it should keep an eye on completeness and consistemeyy. Research should be carried out by means of contrasting hypothesess, operating with clearly defined conceptus, relying upon logic in reasoning [$[9,12]$..

2.1. Setting the aims

Usually y, the historian has his aims set before he starts intensive research.. First of all, he narrows down the topic he is interested in, He might define his interest not only by referfing to specific periods or areas, but to conceptts, relations or phenomena ((e.g.. the impact of scientific theories on techmolegy, or the role of ingenious inventors in the history of science and technollogy $($).

An important aspect of his aims is the initiative for the researcim: whether he has a hypothesis to be checked, or intends to answer a specific question or to investigate a topic. He has to define the depth of investigattiom, based either on some preconceptions of the researcher, of on the resources available or on the expectations concerning the research (t to produce a basic monograph that should be referred to for any detaill, or to give an interpretation of some peri= od/phenomema).

The setting of the aims of the research depends on the intended consumers of the resultus, too: whether they are familiar with the topic, whether they have special precenceptions or interests ((e.g. resulting from nationalidtuy, educatiom)), whether they want to be amused or informed. Theif background knowledge and mentall capabilities affect the scope of context and the methodologies of interpiretation.

2.2. Relevance of data

The historian should have an initial idea about what data should be looked for, and what might be the sources of the information. But he should not insist on his a priori decision on the relevance of the data: while looking through the preselected sourcess, he might have the impression that he had an unrealistic expectation concerning the content of the sources ($(0 . g ., \quad$ they do not refer to the type of information he needs)). Sometimess, the available forms of data do not match the scheme made up by the researcher.. Some informatilom, initialiy beyond the scope of data collection may change the scope of search entirelly:: further on, the histroian will be interested mainiy in this additionall data; he may reiterate through those parts of the sources which were skipped previousilyy..

2.3. Definition of concepts

The definition of concepts is not a straightforward procedure either:: the task is to distillate concepts from the comprehensive data rather than to arrange data according to a given conceptual taxomomy/. A related problem is to trace the semantic changes of the same concepts used by different authors at different times: the sources should be interpreted carefullyy: e.g. in cases of confusion caused by the coincidence or misuse of names, objects should be identified by their attributcess.

A clear and fixed reference world should be givem:: all the terms occurring in sources should be expressed in terms of this reference worildi. This also makes it clear that the meaning of historical texts cannot be clarified by verbatim analysils..

2.A. Partial information, intenciónál description

Historians have to cope with ill-defined entities as well. Usuallyy, only some partial information is availablle, which is not sufficient to identify the entitiy. In most casess, the entities can not be defined extensionaully/, i.e. by listing their relevant featuress, but intensionally, by relating them to other entitiles..

Historians are keen on differentiating between not knowing the value of some data and not knowing about the existence of some datal. They take into account the knowledge about the completeness of the processed sources and about the unevennesses of the collected datan..

2.5. Contradictions

In the stage of data collection, historians often have to face contradictions: multipie values for the same data, facts contradicting to common sense knowledge or violating the consistency of the body of datal. Human historians do not destroy contradictions with fire and sword, rather, they keep them as hypatheses until further, clinching arguments have been advanced. Such competing hypotheses could guide further investigations in order that, finallly, one of them be accepted to be true.

The extreme or unreasonable data arouse the interest of a historiam: they might urge $h i m$ to collect additiomall information to give a
reasonable explanation of the deviatiom. Even an evidently false doto should not be rejected without consideratiloms: it might reflect e.g. the misbelief of the author of the source, which might be of crucial importance in explaining his activittiles.

2.6. Principles for presenting data

A simple organizing principle is to choose specific attributes of the data and arrange the pieces according to the value of the chosen attributes ((e.g.. in a chronological report)). In this case, details on the listed objects/events are encountered in a more or less strict lexicographical order according to the values of the organizing attributtes ((e.g.. chronology -- country -- inventors or inventors -- chramalagy)).

Moreawer, one can arrange the data into chunks around kernels. These kernels can be specified in terms of the type of events//ojejects ((e.g. inventiomss)), or special aspects of an event ((e.g. scientific backgroumd, technical details of an inventilom, further impacts of the invention).

Another approach is when the stress is not on the details of the distinct objects/ewentus, but their impact on each other.. History can be presented along specific relations, resulting in a story with more inherent logic than ordering of the facts by the values of certain attributtes. In this style, restrictions and preferences can be given on the class of statements ((e.g., causalittiess)), on the qualification of statements (《e.g. pushing and pulling factors)), on the semantics of statements in terms of the type of statement and type of value of some of its attributes ((e.g., the role of manufacturing demandis)).

2.7. Filtering criteria for the data

From time to time historians restrict the scope of their interesti: in order to deal with special aspects filtering criteria are to be formulated in terms of attribute types and/or types of statements..

The depth of the investigation can be constrained by discarding either some types of data ((details of inventions)) of statements ((further impactis, parallel attemptss)). Oftem, instead of listing specific objects/statementss, an aggregation of these statements is given (e.g.0 referring to sets of objectss, overall statememtsi)). The depth of reasoning (exploring causalities)) can be limited, and also secondary information (0 n sourcess, on qualification of statements)) can be disregardead.

When presenting the information one may restrict himself to one alternative of the values/explamatioms//mppotimeses; in other cases, putting emphasis on the competing alternatives may be a main point of interest.

2.8. Investigating the staructure of the body of data

Similarities in the structure of statements can be investingathed, eithef to eniighten one of them by the other, of to filtef out typical historieai patterns. The same statements with different attribute values can be related to point out similarittiles; groups of statements with different
attribute types may suggest surprising associations for analogiless, while ones with attributes of the same value or the same type but with different qualification (e.g., failure -- success)) can be contrastued.

The structure of the body of data can be the topic of investigation in itself, too. In ordef to point out separate chunks of datak, one can investigate whether two satements of objects cam be related (vial statements sharing some attributess), where the hot points in the network of collected information are (e.g. too many unknowm attributes for statementss, very few statements referring to an objectu))..

2.9. Reasoning over the facts

Reasoning plays an essential role both in data-collectiom and interpretatiom: historians do it conscioussily, using a comprehensive set of not necessarily deterministic - rules. On the one hamd, a body of data conveys much more information to the historian then simply a set of facts. He, relying upon common-sense and domain-specific knowledge ((rules, proceduress)), endows the facts: whenever needed, through deriving conciusions he can add new facts to the initial ones..

When investigating and interpreting the data, the historiam using all his expertise as a historian - makes guesses for further statements to be tested, or for possible explanations to be checked.

2.10. Data collection presentation and interpretation imterwoven

It seems to be an important characteristic of historians" work that data-driven and goal-driven styles are intermixed in their worlk.. Not much advice can be given how to separate and guide the stages of data collectiom, representation and interpretatiom. When collecting datta, it is necessary to investigate the known data in ordef to judge about the value of some new informatilom:: a new piece of data may initiate the need of reconsideration of some data accepted previousilly/, the investigation of the body of data may result in hints for reinterprettationss; on the other hand, a hypothetical interpretation can be used to guide further data collectilms.

One should not forget that both the historians" methodology and their domain-specific knowledge do change in course of theif actilwiltyy, historians do learn from their experiemcess.

3. WHAT IS REQUIRED OF A COMPUIER AID FOR HISTORIANS

In past decades, several software tools have been designed mto suppoft the task of transforming a chaotic collection of unfelated thoughts into an integrated, orderiy interpretation of ideas and their interconnections ${ }^{m}$ [3]. These so-called hypertext systems have gaining interest both in the users" and software engimeers" commumiltiless. While they have beem proved to be handy and adequate tools in severan, usually rather small= sealed applicatifonss, they turned to be too restrictive and difficult to use when modeliing complew, large-scale domains [2].

Centrai aims of hypertext systems fit to the needs of historiams quite weill, so we can declare, in general, that what is needed is a hy=
pertext system. surprisingiy enowgh, following the above analysis of historiams" work, we have found that none of the existing hypertext systems would be entirely satisfactory for their purposes. Even a welliselated and not too large appiication domain [5] has raised issues which have significance beyond the existing hypertext systems..

The reader can get a view of hypertext systems e.g. from [1, 2]]. We wili use the generaily accepted hypertext notions (network, node, link, type, instance, authoring versus browsimg, query e.t.c.)) in their usual meamiling.

3.1. Representation of objects and statements

The usual node-iink scheme cannot be used with the cast featuring objects plus binary relations between them: it is necessary to deal with relations having more than two attributes.

The suggested uniform representation of objects and relations is in form of nodes with predefined slotss, and links in form of pointers from a certain slot of a node to anather node as a whale. This representation is appropriate to deal with relations wich may have both objects and relations among their attributess. The unprocessed, purely textuall information within a node can be stored in character-type slots of the node.

3.2. Instantiated versus referred nodes

One should distinguish between the events of (1)) creating a new node and ((2)) creating a link to an already existing node. In the case of an object identified by the value of one of its slots (e.g. a name)) it is easy to find out whether the node has been already createed, but the incidentall dismatching of the values of a certain slot (e.gj. the date of birth of somebody)) should be registered.. A systhematic check of all the candidates should be performed in case of nodes wich can be distinguished only by identifying the values of their slots.. The system should be prepared to instantiate nodes with missing or temporariy given siot values..

3.3. Permissiveness in assigning values to the slots

In order to suit to the incremental style of data collection and concept distiliatiom, both the defaults and the constraints should be permissive: extreme vaitues, violated type or domain restrictions should be allowedi. In addilitilion, multiple candidates for a value of a slot should be allowed.

Besides single-vaiued siotss, slots with more than one values could be defimed. Also distinction should be made if a slot is used to identify a node or notu.

3.A. Invertable pointers

Since in advance no preferred pathes should be specified witmilm the Hetwork, the direction of the access of nodes should be left undefimedr. On more technical levell: pointers should be bi-difectilomall.

As a result - in contrast to the common practice when a single struature of the physical arrangement of the nodes is fixed once and for ever ((implemented as e.g. files of folders)) - , the system should offer savaral methods of the same rank for the access and re-arrangement of the nodes,, and should store the nodes in that way/, if requilreds.

3.5. Modes of usage: authoring, browsing, presentation

The system should provide dedicated tools for the purposes of authoring, that is of a piecevise mapping from a large amount of externall textuall information onto a hypertext and continuosiy modifying this hypertext whenever necessary..

In addition to the support of the browsing mode driven by the queries from the online users, features should be given for presenting the hypertext in form of traditional reports fulfilling some overall requilrememts..

As historians essentially do not work with a frozem set of datta, and the activities of data collection and interpretation are highly interrelatedi, it is necessary to allow the different modes of usage to be embedded into each other..

3.6. Tools for browsing the network

In order to avoid the frequently discussed situation of getting lost in hypersprace", there should be offered more sophisticated browsing techniques than freely wandering over the network..

Virtual links should be generated to ease the navigation over an extensive network of to indicate unexplored parts that might be interesting for further investigatiom.

In the case of dense and large networkss, the graphical visualisation of the network is not sufficiemt: the content of nodes should be represented in textual form, unfilled parts, altermartirues, links should be indicated consequemitliy.

3.7. Sophisticated network-editing

A much discussed shortcoming of present hypertext systems is the problem of "premature organisatiom", i.e. they do not support sufficientiy the modification of the network in course of further progresss.

New editing functions should be added to the traditiomall node/limp creation/deletion primitituess, moreover the technical issues should be solved in a consequent and transparent way (e.g). problems of alternatives,, links to non-existing nodes)).

The modification of the content of nodes should be supportedy. By providing utilitiess, both the elevation of a textual slot value into a node and the splitting/joining of nodes should be allowedd.

3.8. Global filtering

The more comprehensive the network is,, the more inevitable is to offer tools for deliberately restricting the scope of investiggation. Globall filtering criteria should be expressed, first of all, in terms of types and values of nodes and links, or by restricting the qualification of statements to be taken into accoumti; finallly, in terms of the structure of the subnetwork at handl.

Filtering criteria can be used in an exclusive way or as preferences during the sessions with the system. By changing the filtering criterila, the system should be tuned to various purposes and specific users, or to different working methodks; even preconceptions can be demonstrated in this wayy..

3.9. Network-query

Query-based access should complement navigationall browsilmg, allowing search patterns referring both to the comitrentt aff moodess and tho the struncture of links.. A pattern language should be proovidded tho formulate expressions with the usual operations ((negation, altermatimes, closure)).

3.10. Optional enhancement with mule-based features

In contrast to relying upon only the network as it is, the system itself should possess knowledge about how to amplomeand emhearoce the network.

On the one handi, the system sthoulld ablibe tbo generate new nodes/links on its own initiattiwe, and not only by expecting the user to do so explicittellyy. So the system should be active, by performing utility-1ike operatiouss..

On the other hand, the system should aid the user on a higher level as welll:: relying upon domain-specific rules, suggestions should be given for further queries/data collectiom. These rules could be processed by both forward and backward chaimilmg. In the first case, the inclusion of a new node is suggestted, as a probable conclusiiom, while in the second case a possible interpretation of the presence of a node/link is suggested.

4. PRESENT StATUS OF THE RESEARCH AND PERSPECTIVES FOR FURTHER WORK

In order to collect building materiall to a prototype versiom for testimg the validity of the above appracth, this research has been accompamied with a meticulous investigation of a large number of case studies concerning histories of 2oth century inventions [55]. The texts mounted up to 3ook written by professional historians for the interested genefall audience.

In a nutsheill, this investigation led to the following resulitis:

Having set the borderline between formatted and unformatted data and discarded all the details specific to productss, processess, firms and alike, there remained more than 300 entities used to describe data re=
lated to the historicai aspect itself [[6]. These entities refer to each other but they could not be squeezed into a usual concept hierarchy/; on the other hand, they could be characterised by a profile of severall dimensions (restriative versus constructive role, personai versus sociall scope, $V a r i o u s$ aspects, intentional character of the entity etc.)). Moreover, the organism of several case studies has been investigated in detail:: beyond the statement level there has been found a bewilderimg abundance of presentation variants supporting orientation withim the data and rendering the collected data [7] .

In the next stage, these pieces of data should be used as actual patterns within a computer aid to be used by students of the history of seience and technology:: in the first version, this tool should help in writing case studies of a similar structure and scope.

Further on, based on the experience of using the prototyppe, the soope and flexibility of the system will be increased step by stepp, along the above-mentioned directioms.

Acknowledgments

The authors wish to thank Hideta Nakajima and Jozsef Váncza for his critical remarks on the first draft of this paper, and Ágnes Vorkonyil for the inspirating discussions on historiography.

References

1. Conkilim, J.: Hypertemt: An Introduction and Survey/, IEEE Computer,, Sept.. 1987, pp. 17-41..
2. Van Dam, A.: Hypertext"87 Keynote Address, Communications of the ACM, Voil.. $\mathbf{3 1}$ No.. 7_{n} ((1988)) pp.. 887-8955..
3. Halasz, F. G. = Reflections on NoteCardss: Seven issues for the next generation of hypermedia systems., Communications of the ACM, Voll. 31 No. 7, ((1988)) pp. 836-8522.
4. Hatvanyy, J_{i} : On using a computer to write a history book, in: Progress Reports of the Joint Japanese-Hungarian Project for Expert Systems on the fistory of science and Technology No. 3. Budapestr, 1986.
5. Jewkess, J., Sawers,, D., Stililemman, R.: The Sources of Inventilom. MacMilian \& Co. Ltel, Londem, 1962.
6. Márikus A., Ruttkay Zs.: A Programmers" View on the tistory of Science and Technollogy/, Part II.: A Close View on Texts and a Proposal for a Fooll. Fo appear in the Progress Reports of the Joint Japanese-Hungarian Project for Expert Systems on the History of saience and Technollegw. Voll. 4. Tokyo, ((1987)).
7. Murakami, Y.: Traditionall historiography challamged, jij; Progress Reports of the Joint Japanese-Hungarian Project for Expert Systems On the Histary of Science and Technology No. 1. Budapestu, 1986.

BRAINDEX - A PC-based medical decision support system

\author{

1) Institute for Information Processing
 University of Technology Graz

 University of Technology Graz
 3) COHinhicooffanaestesiodogy
 State Hospital Graz
}

Abstract

An interactive and a non-interactive system for supporting decision-making in brain death diagnosis was implemented on a PC. The systems accept medical data from a database. Both systems were tested in clinical practice. The interactive system yielded greater acceptance by the physicians and hence is considered to be developed further.

1. It atuddutiian

In recent years the application of modern medical equipment made it possible to sustain biological functions like respiration, blood circulation and the nutrition eycle by machines. Therefore it happened over and over again that the physical body of a patient was maintained alive by technical facilities whereas the brain was dead already.

The technique of organ transplantation now confronts the physician with two problems; on the one hand he has to be sure that the organ donor is dead in medical and legal respects, on the other hand the taking of organs has to be made as early as possible to provide the recipient a sound organ.

For these and other reasons the physician is exposed to great mental burden and the wish to consult with a collegue who is unaffected by emotional factors is obvious. A computer which acts on expert level seems to fulfill this prerequisite best.

Another reason to develop a computer-based decision support was the great amount of medical data which were collected by clinical tests and stored in a database. These data suit well as a basis for a consultation session.

The decision support system discussed in this paper does not dlagnose brain death sinee this must be left to the responsibility of the physician, but it draws his attention to certain points which are not in accordance
with brain death. Hence the task of the system is to check all available faets to detect data ineonsistent with brain death dlagnosis and inform the user (the physician) about it.

The project started with developing two systems, one interactive, the other having the consultation results listed and printed out. This paper concentrates on the description of the interactive system since it seems to be received better by the physicians in practice.

2. Medical Background

The classical definition of the biological death is the irreversible loss of the function of the central nervous system following the cessation of blood circulation, which yields the death of tissue and cells.

Brain death, however, includes the complete cessation of the functions of cortical, cerebellar and brainstem structures, i.e. the irreversible loss of all brain functions with preserved function of other organs (eardiocireulatory and respiratory systems).

The irreversible cessation of brain funetions, which is equivalent to the definite loss of external and internal control functions of consciousness, is considered as the death of the individual.

There are six phases of a comatose patient towards braln death, distincted by the location and extent of the lesion. The functional disorder of cerebral aetivity is recoverable at any stage, but in most cases patients who reached the last two stages (bulbar syndrom) died within a few hours.

The most important signs of brain death are deep coma (unresponsiveness), no spontanous respiration and loss of cephalic reflexes (e.g. pupillary light reaction).

Isoelectric EEG, evidence of the stop of cerebral perfusion (angiography) and evoked potentials are additional tests required to establish a secured diagnosis of brain death.

The time of the climical explorations depends on the extent of interpretability of the various symptoms and the progression of the braln lesion.

There has to be some time between the first diagnosis of brain death and the final declaration of death, which can reach from 6 hours up to 3 days and more, dependent on the age of the patient and the nature of the lesion which eaused the brain death.

3. Computer-supported brain death diagnosis

The decision support system is called by the user directly after consultation (or update of the patient) database. Therefore the patient and the medical test data are specified already when the consultation starts.

Since all necessary data are gathered from the database, the user need not be questioned about medical data as e.g. in MYCIN. Pareumeter values which are not present in the database are considered not to have been collected or not to be judgeable.

First some prerequisites are checked which are necessary for a valid diagnosis. Depending on the severeness of missing prerequisites, the choice to continue the consultation is left to the user or the system terminnties.

Next the system tries to conclude a first hypothesis of the patients state from the most significant parameters. If the patient is in a phase which can lead to brain death within a few hours (bulbar syndrom), the actual consultation starts.

Every inconsistency with the brain death diagnosis is displayed on the screen, together with explanatory text and bibliographical references. Then the physician can indicate his judgement of a specific inconsistant set of symptoms by selecting one of three possibilities.

If he enters TOLERATE, that means that the displayed data are consistent with brain death. Selecting NOT TOLERATE he informs the system that the inconsistent fact actually is a contradiction to brain death diagnosis. In this case the system immediately terminates the consultation with the conclusion that the patient is not dead. Between those two extremes the user can select NEGLECT to tell the system that he judges the constellation as a contradiction, but wants to continue the consultation.

However, at the end of the session, the system displays all inconsistent facts found during the consultation. The facts are grouped in untypical, but in brain death permissible and in contradietory data. In this marmer the user is reminded of all inconsistencies in a short form and can establish his diagnosis.

The non-interactive system does not have the advantage of a communication with the physician. Hence it cannot decide whether a detected inconsistency is a contradiction in all respects or there are reasons to tolerate it . On the other hand the physician need not sit down at the computer since he gets a printed output.

4. Drevedppmanetilissues

4.1 Ssofmareeltbods

The interactive decision support system was developed with the expert system shell "Personal Consultant Plus" (PCPLUS). This shell is a successor of EMYCN, hence producing fule-based baekwafd=chaining systems. Further features (frames, forward-chaining, meta-fules) are implemented to inerease the power of the shell.

At the development level, a running prototype can be implemented, tested and improved in the manner of "rapid prototypping'. The user of the developed system gets a special version which is freed from the dewellopment oxerithead and hence runs more rapid.

Since sysstems developed with PCPLUS are running in a LISP-environment (PCSCHEME), special LISPfumetions can be defined and used within the knowledge base. So the knowledge engineer himself can implement fumetions and procedmes he needs for his special problem and which are not supplied by PCPLUS.

The rules and associated parameters, which deal with a special problem area within the knowledge base can be grouped together in so-called frames. This PCPLUS featume helps structuring a large knowledge base and prevents the developer from getting lost in a mass of knowledge base items.

For the definition of rules, an "Albbreviated Rule Language" (ARL) can be used. PCPLUS itself changes the ARL-expressions into their LISP representation, which can be edited as well.

Ewen though working with PCPLUS is very convenient, the knowledge engineer who uses the system for a while would wish to have a facility for faster knowledge base editing, especially at later stages of rapid prototyping.

The non-interaetive system is implemented in INSIGHF-2. This shell is not as powerful as PCPLUS, concerning user communication and development features. Therefore the knowledge base can dinecdly be manipulated in a text-editor. Besides, since it is compiled, it runs faster than the LISP of PCPLUS.

The database which provides the facts for the two decision support systems is implemented in dBase III + .

4.2 Harddware

The whole system (database, PCPLUS decision support, INSIGHT-2 deeision support) is working on a IBM PS 2160 under MSDOS, wersion 4.0. 1 Mbyte memory, 4 Mbyte Harddisk and an arithmetic coprocessor are provided. In addition to it, an EGA=Monitor and a matibe-printer (STAR ND-15) are employed.

4.3 Implementation

The knowledge base of the interaetive system contains 300 fules which are grouped in if frames. The data base differentiates 300 items, but the decision support system only check 70 of them se far.

The sysstem design is inflluenced by ideas of 'hypothesize-and-test'. After having checked the prerequisites, a frame is called which simulates forward-chaining. The forward-chaining process is driven by the most signifificant parameters and yields procentual values for each coma-stage, which represent the amount of confinmative data for each stage.

If the strongest confinmation is in the phase towards brain death, the system hypothesizes brain death' and tries to test all known facts to prove this hypothesis via backward-chaining.

The facts are diffferemtuiated in various ways. 'Confirmative data' are expected facts, which support brain deeath diagnosis. Since the physician is only interested in discrepancies, these facts are not displayed.
'Untypical data' are data which are not the normal case, but can be tolerated or explained in some way. These facts are not contradictions to brain death, but should be shown to the user.
'Comtradictory data' are facts not consistent with brain death, which cannot be explained by the system. If only one comtradictory fact is found, the system considers the possibility of an invalid test-result, otherwise it refuses the diagnosis of brain death.

There are seperate frames implemented for groups of parameters (e.g. cephalic reflexes, spinal reactions). The frame TOP-LEVEL is the overall-frame which manages the flow of the consultation. The checking of prerequisites at the beginning and the summary at the end of the consultation are done by special frames as well

The sysutem does not search the data base for facts, but accepts a file of all current data, which is provided by the database before calling the decision support system.

The explanatory text which appears on the screen during the consultation is not implemented as a part of the knowledge base, but stored in a separate 'textarehive'. So it can be manipulated without changiug the knowled ere base, which has the advantage of not having to create a new user-version of the system.

The INSIGHTF-2 system works in a similar way, although some controlling meehanisms had to be simulated simee only pure backward-chaining is supplied by the shell.

5. Expmoiciede atidfutueatpreats

The finst prototype of the whole system (database and the two decision support systems) was installed at the Institute of Anesthesiology, University of Gram, and tested with about 30 patients.

The acceptance of the interactive system was higher than the non-interactive. The testing physieian suggested improvements of the explanatory text and extensions of checked parameters, but agreed with the logieal methods of working.

The second release of the system will also contain new features, which do some teaching tasks: there anill be a dictionary connected, so that the user can stop the consultation at any time and look up an expanded general explanation for involved medical items (e.g. how to cause a reflex and how it proceeds). Besides there should be the possibility to consult the system without the database, i.e. without having a real patient. In this case the system has to elicit the required data from the physician.

Future research will be done to extend the system from brain death diagnosis to coma-diagnosis, to implement temporal reasoning and to provide some prognostic statements about the patients outeome.

References:

P.L. Alvey et al.

An Analysis Of The Problems Of Augmenting A Small Expert System Aus: Research and Development in Expert Systems, Ed. MA.Bramer, pp. 61=72
British Computer Society Workshop Series 1985
[Bo] Michael Borecky
Kriterien fifir die Bestimmimg des Hirntodes
Diplomarbeit TU Graz, BMT, Graz 1986
John G. Gammack et al.
Psychological Techniques For Elicting Expert Knowledge. Aus: Researeh and Development in Expert Systems, Ed. MA.Bramer, pp. 105-112
British Computer Society Workshop Series 1985
[Ins] INSIGHT2 - Reference Manual
Level Five Research Inc., 1985
[Kr] J. KKipizHHSNyyya
Logic Programming. Aus: Computer Systems for Process Control, Ed. Gueih Plenum Press New York 1986
[Li] Gerhard Litscher
Multimodal evozierte Potentiate
Dissertation TU Graz, BMT, 1987
[Lo] John M. Long et al.
Use of expert systems in medical researeh data analysis: The POSCH AI project. Aus: National Compuiter Conference 1987, pp. 769-776

[M b]	Heribert Moik, Bernhard Willegger Erstellung eines Systems zur Unterstützing der Hirntod -Diagnose Diplomarbeit TU Graz, 1988
[$\mathbb{N a y y}^{\text {a }}$	Chris Naylor How to build an inference engine. Aus: Expert Systems - Principles and cas studies, Ed. Richard Forsyth, $\text { pp. 63- } 88$ Chapman and Hall 1984
[PC]	Personal Consultant Plus - Reference Guide Texas Instruments Inc., 1987
[$\mathrm{Pr}^{\text {e }}$]	Gerhard Pendl Der Hirmtod Springer Verlag 1986
[Pfiu]	Gert Pfurtscheller Messung der Komatiefe. Aus: Notwendiges und nützliches Messen in Anâsthesie und Intensivmedizin, pp. 51-61 Springer Verlag 1984
[Pud]	Frank Puppe Diagnostik-Expertensysteme Aus: Informatik-Spektrum 10/1987, pp. 293-308
[102]	Frank Puppe Diagnostisches Problemlósen mit Expertensystemen Springer-Verlag 1987
[Ro]	H. Rotter Moraltheoretische Fragen ziun Hirntod. Aus: Intensivbehandlung, Jahrgang 11, N. 1/1986 pp. 22-25
[Schi]	Horst Josef Schubert Datenbank imd Diagnoseunterstüzung fuir Patienten mit Verdacht auf Hirntod Diplomarbeit TU Graz, 1988
[A. Earl Walker Cerebral Death Urban \& Schwarzenberg, 3rd Edition, 1985
[Whi]	A.P. White Inference Deficiencies IInRule-Based Experatt Systems. Auss: Researebh and Development in Expert Systems, Ed. M.A. Bramer, pp. 39 = 50 British Computer Society Workshop Series 1985

```
Kl limische EEG-Ebwentung RESTIAKTINGTAST
Hiirnlÿscïcom| SEKUNDSR
```



```
NICHT iswellekktmiseblomm EEG
```



```
Schmwetberedit: miimeflestems 72 Stuundlem
Kconsequemzem: EflG+FKattroill lem
    AEHP
    VER
Lit.. [31.3]
* Frage zu dieser Kombstrellation - bittée RETURN driünkem
```

Fig．I；Result of a consultation

BRAINDEX

```
Klimissothe EEEGG-Beaneertung| RESTHAKKIIVITT,AT
Hiirnlässifomm SEKUNDQ̈R
```



```
NICHT isculemeturisetlemm EEG
```



```
Diagnose Hiirmtood lst erst naem lsoelekturs eflamm EEG zul ste|leam!!
Sccthwnembezeit: mindestens 72 Stumblem
KKornsseaup pillire Beaurite il luing
Sie können obighe merte：tellerierem
Lijt． 43 verfach 1 柬各夆idgem hieht toherieereen
```


Tig．2：Asking for physicians＇s judgement

RLULET247

```
            SUBJECT :% HT UNTERSUCHUNGG-RULES
```


1) 1) Hirmlaasiiocm is BEIDES, or
2) Hirmläsiomm is= SEKUNDAR, and
2) KITinisscethe: EEGG-Breneertumg is ISOELEKTRISCCH,
3) (VALUE-COF WNDEERL1ST) is equal tor,
Then 1) itt is deffinittee (1003%) tmat Amdere Grunde fur isoelektriscfies EEG iss
SEKK_AREFFLEX, andi
2) evalutate (D (QUOTE (EEGGLINNMOGH州 HIRNLASLQN)), (QUOTE (EEG '/ORBICHII))),
and
3) itt is deffinittee (1003%) thmat Klimiscathee Bequrtteilumqg des EEG fuir Hirmitaods
erklärt is: ER|KLARBAR; and
4) evaluate (W\&AIT)), and

```

```

IF :1 ((HHIRNLLASLON = BEIDES OR HIRNLASION = SEKUNDAR) AND
EEG MLINISCH = ISOELEKTRISCH AND (VALUE-OF MIDEALI'SD EQUAL
QUOTE)
THEN :: (EEGj;ORSICHHT = SEK_AREFLEX AND (E (D) (QUOTE (EEG_KLINLSCH
HIRNLASION)) (QUOTTE (EEG_MORSIICHHT)))) AND
HT_EEG_KLINISCH EERKL = ERKLLARBAR AND(E (WNAITM)) AND (SET 72))
PRENISE :: (\$AND
(\$0R
(SAME FRAME HIRNLASION BEIDES)
(SAME FRAME HIRNLASION SEKUNDAAR))
(SAME FRAME EEG_KLINISCH ISOELEKTRISCH)
(EQUAL*
(VALLUE-OF MIDERRUST)
(%))\)
ACTION :: (DO-ALL
(CONCLUDE FRAME EEG_VORSICHT SEK_AREFLEX TALLY,100))
(E
(D
(EEG_KLINISCH HIRNLASION))
(b
(EEGJ vORRSICHT))))
(CONCLUDE FRAME HT_EEG_KLINISCH_ERRKL ERKLARBAR TALLIF 100))
kE
(MAAITD))
(SET 72))

```

Fig. 3: Corresponding rules in the knowledge base

A FRAME=BASEED APPRKACH TO PROTOCOL ENGINEERINH
Pêter Ecsedi=Tótlm
SzKi, Computter Researcln and Innovatiom Cemter \(\mathrm{H}=1015\), Bucdarpeest, Dométtii u.. 35-45. Humgary

\begin{abstract}
Me shall present a frame-based lamguage speciallyy tailloareab accordiing ta thee needs of communnicatiing protocols. It will be slhowm how this lamguage cam be used im a naturall mammer for specifiicattion of PDU"s amd the commumication ittselff. The resultiong specifications fulfils two fundamemtal requiremerntrs:
- first,, they are compriethernsible evem by the nonexpert user:
- secomd, theyy are executable directlyy by marchimes.

Keywords; knowledge represemtation, frame-based lamguage, protacoll specificaitioan, protacol engineerimg.
\end{abstract}

\section*{1. INTRQDUCTIQN}

Reccemtly, it has beem realiissad by computter seientists that usiings the methodology of Antificiiall Intelliggence may help considerablyy im reduciimg the compplexity of intriicatter probleams., Ome examole for suclh a protbleam is the proper trearatment of commumiticatimg protocols. Indeed, protocols may exhibit very intriccatte behaviøur for beiing paralellyy runnimg, nomedettermiinistiic amd commumicantive processes. Investigation of applicabiliity of thiis new tecthmolloggy for the specificatiiom, verifficartion and testtimg of protocols has begum and now is on itts way.

Our approach follbows this liime of thimkiing, i.oes. we wistm to comtriilbute to the imvestiigatiioan of applyiing AI methodologys for protacol engineeriing probliems, Acctuallyy we are goiimg to present a frome-based lamguage specialliyg taiilocreat accordiing to the needs of commumiicattimg protocols. It will be slmown how this lamguage eam be used im a naturall mammer for specificattion off PDU's and the commumicicat iom ittsellf..

Albeít protocols on time lower layers of tine OSI hierarathys are fiimed (amd a good deall off them is implemented by softeware or hardware tools), a large number of differemt new protocols will appear agaiim and agaïm on thee applicattioan layer. The frame-baseed lamguage suggesteed here cam be used witlin ease for descrilbiing these new applicatiomal protocols. The resultimg specificattioms fulfill two fundamerntal requirememts:
- firstt, they are compneethernsible evem by the nomexperit user;
- secomd, they are executable by machines.

Probleems connected to protacoll engimeeriing eam be devideed imito the follbowiing four groups:
- formall specifficattion of protocols and services
- (aultromated)) implemerntsation of the specificcationon
- valïdfattion (vertifiicaation and testiming))
- conversicicm off diffferemt specifiicatioions.

The specifiicattion probleams playy an outstrandiing rolle im alll areas off protacoll engineeriing, and so we are consideriing primarilly theese probleams.

\section*{2. FRAMES, AN INFORMAL DESCRIPTLONN}

\subsection*{2.11.: The phillossappliyy}

Frame-based systteams usuallyy treat imformmatioan om thpe differemt levels: the lewell off frames, that off the framestruceturess amd fimallly, the levell of worrlds.

Gerneerrally speakiing, one cam say that a frame is a structureab symbolic miodel off a concept. Acctually, itt cam be considelred as a (usuallyy ordiered)) set of argumernts, callead slotis, each of whieh is used to represent a propertyy off the concept ta be modkellled.. Now, every slot may have a value, whiclin is another frame or is a kimd of expressioms im some formall lamguage. On the other hand, amy part of a frame cam be omitteed iff convemient; the omittieed parts are considereed hiddeam by the systteam.

\section*{2.2.. MEetta-ìm forma tion}

Im order ta cope with the compllexity of reall world concepts, one may associatte imfformation ("metta-infformatiom")) ta any part of a frame, that is, to the name of thre frome, to the slots and to their values. The metta-imfformation is also formaliseed im frames which are calleed matta-fframes.. The pieces off meetalainformátiom are sttomreed im the slomts of the meetta-ffraame.

Im this paper we shall use only some metta-fframes eomposed of the follbawiing slotes:
- default
- ramge
- cardinalitty
- demom.

The imtuittive meamimg of these slots are quite famiiliar; the imteresttead reader cam fiind more detailss im IID.

\subsection*{2.35.. Framee-structures}

The secomat levell off handliing imfformation im frame-based systeamss is the levell of framerstiructures. These structurres are usedt to represent the relattioans among the concepts modelled by the frames. The idea behimat this formalizatiom is that iff eertaijn shot (and itts value, iff any)) are not foumd im a particular frame, them a search is made by the systteam allang the relialtiouns ta see whe ther the slot amd itts value are contaimed im another frame aecessibulle from the present one allamg such relastioams. If so, them the shot and itts vallue will be "imheriitteal" by the origiimall frame.

Here we shall use only the familiar relattion eallead, "is, a" ("a_kind_of", or "imstramce_of"). Iff two frames are im am ís_a relattiona, them we say that the first frame is am "imstanncee" of the other, and thiss means that the imsitamece will imherit all lacking imformatiom from the other one.

\section*{2.4.- Moorlds}

The thiird levell of handliimg imfformation is proviedead by the posssibiliitty off formiing groups from frames, im order ta describbe e.gg. the sa calleedt "possible (or alttermatter)) stiatteess" of affair"s.0

A world cam represent hypattheticall alteemnatiivens, or cam be used as a tooll of represemtiing stattess of a process that chamge with tiome. Mborlds cam be marnipulated im severall diffferemt ways.

\section*{3. CONCOPTS IN PROTOCOL SPECIFICATIION}

Salving the probleans arissing im protocall engimeerimg, we must comsider three different aspects;:
= architecturall comsiderationms
= functiiomal comsiidertations, and
= description of messsages.
In this section we shall discuss the three aspects im detailss..

\subsection*{3.1. Arrchitecturall desciriptionms}

In order to decrease the imherent compllexity off protacols, they usually are divïded inta diffferemt compomentsis The compomemts obtaimed by such decompossitioms are connectead to each other through some interaction points calleed gates. Then, the speciification of the decomponsition of a protacoll must describber the followwimg three parts: the compromernts themselves, the gatess amd the way of compoossittion. Below we present four frrames whiclh cam be used to descrilbe the generall archiitectural aspects off decomppesittions. (We shall use the follbowiing notatioams. Frames will be surroumded by the keywords frame amd emd. The slotes amd tunetir values are separateed by colons, amd we shall use semicolloms afteenr the mame of the frame and also after the vallues of tulhe shotes. Nectia-imformatiom will be denoted allso by keywords; here we shally use only the meetasslot...emd pair..))

\subsection*{3.1.1. The comproment firame}

At this point we wisln to speciffy the eomponnent froom the outsidke, i.e.. as iff it was a black box; the immer aetiwiitty of thee component wiill be deseriibed 1 ater. The compornemt, however, eam communicate with its enviromment throught the gates. We shall disttingguiisth among input gates, output gates (whielm are unidirectiomal gatees)) ands bidirectiomal gates givem inf the timper slotes of the follloowingg frame. To eaeh slot a mettafframme is associatterd which defiimess defawlts for these slots. This meams, that, e.gg. iff we give the definitiom of a particular compornent without speeiffyingg value for ome or more slots, them the value none will be imheriitteat fromm thiss frame. Thus, usimg this default/iintheriittancee macehinepyy we may reduee the lengeth of deseriptioms.
```

frame coumponents
inputyatess;
metaglot defaujutingMe;
and
Qutput gqates:
metaslot defaull: none;
end
biodireqtíenal ljettes:;
Aljalloot defaulu monei
and
eng

```
 (tpe) in the fohloowinh way:

\subsection*{3.1.2.. The gate frame}

The gate frame simply descriibes a gate.. Im this frame we may imdicatte the compornernts among whicln thee gate is locatteed (iim the "bettweem" slot)), the direction of itt, and we cam 1 iistt all messages which may pass throwglin the gate.. Finallyy, for a fiimer sthudyy, we may speciffy itts "capacitty" (siizee)) amd "speed", (the user may augment these two slotes by meetra-informattion, iff necessary)..
```

frailie gate;
betweter!;
direction:?
ffletmaslot lej,zu yy{bidirectiomal!
range-tbildiredtionall,ffoiï_y_to_2,froia 2 to y;
end
meseages:;
capacity:;
fledtwslot defaguill:infinite;
end
speed:;
actasllot deffaulttinflinjte:
and
end

```

For inllusstraationn, let us defiime the gate named "al upper" of the tpe above..
frase upper;
is a:gate;
betwernuser,tpe;
direction:bidirectionnll

end

\subsection*{3.1.33. The eompoossition frame}

The commectionss among the difffemt eompornemts are speeiffieed im two stcepps. First we defiime the compoossition of two compromemts onlyy im the "bimary_compoosittion" frame, amd them we gemerraliise to more complex siittuattinams.. Im the bimaryy comprossitioan frame, we shall giiwe the two eompornernts whiclm are connected to eaclin otiner amd the gate( \((s)\) ) whielm are used ta realise the conmectiom.. Furthemmore, we speciffy the messsages bettweem these compromemits.
fraje binary_coiitposililuon;
coipanestita:;
aetasilpt cardinality:2;
end
BBSsagesd roffill to 2: \(2:\)
ffte55agestifcoiiiz2tdol k :
end
For inllussturation we defiime the bimarry complossition of two itpe's: tpell amd tpee2 (which are assumed ta be defiimead previouslly working im cllass 0 ).
```

frajiz tpel/tpezz;
i5_ a tbinarycmampusitínit
co3ipon8nisttpeal, tpe2;

```


```

end

```

Norre generall compoosiitions cam be specifiied by usimg the "compossitiigm" frame, describlbed bellown. Im this firame we shalh give what bimary componsitions are used among what eompornerntis., Mborieover, im order to be able ta buildd a "larger" black box eonsistinge of the composed compormeants, we may defiime the "visibiblie" and "invisilblle"" gates of the compoossite. The visibiliitty is meant fromm the viewpoint of the observer beimg outsiide the larger box.
```

frame composition;
components年
bimanyjcuqpmsittiams:%
visible jadters:;
metaslot pefdult:aIT;
end;
imwisciblumjaytes.4);
metaslot deifumItimoner
end

```
end

\section*{\(\neq\)}

For the sake of illlusitraation let us suppose that tine eemarnemes tpel, tpe2, and sp (service_prowiderr: time uniom of the networlk amd thee lower layers)) and their bimary compossitioms tpel/isip amd tpee2/sip are defiimed. Then, the whole protocoll cam be defimeed as follows!
```

frame transport: jirotucaol;
is_a:cospositiom;
coumonents!tpel, tpe2,sp;
binary_conpositions:tpel/sp,4pe2//spm
vi5ible_gates!upperl,upper2;;
invisibleggates!loweri,\omerai
end

```

\section*{3.2.. Furnctiomallityy of compromernts}
 componssittions, we may turm our atthemntion to the desciriptisom of the imner structurre and fumctionalitty of the compornerntis.

The immer activitty of a comporment is most approppriately describbed by adoptiing tline extemeded fiimitte staite marchime approaelm. Acccoorralingly, we may descriibe the activitty by makimg use of "snapshots" representiing the statte of affairs at releewant monds, and them speciffyising the dynamic ""triarsittions" ammeng tbreese snapshots. Im a certaiin sense, we will be im anallogyy to the
 betweem two staites (the "bimary" steep)) and them we give the "decilaratiiwe" part (the gemeral stteap)) whielm describlbes the possible stattes and transittivams among them as a whole.

\subsection*{3.2.1. The transition frame}

The skeletall imformatiicm on a tramsittion cam be givem im four items: the (present)) staitee, the imput event, the output event, and
the next statte. These four itteins will be givem im the four shots (state, imput, output, and next_statte)) im the frame behow.

In reall applicatioms, howeewern, tramsittioans may contaiim (of depemd on)) moore imfformatiom.. For example, im time popular "extonded finitte stattee marchine" approaclin C21, one may providje also imfiormatiiom about the comediitiioms whem tline tramsiitioon is enablied and what additicomall actiicmss shoulld be done duriing the tramsitiogh; this imfiommaticom will be giwean im the slots "enabliung_predibeat te"" and "action".

Ancother imporrtant propertyy off tramsiittionas is how they handle the "passiimg" imfformatiicum (the parrammetrerrs). Parametters may origgismatue from three differemt sources;
- the ones of the firstt group are "lefft" im the (aetuah)) stater by the "previqus"' transittion (for example, a procedure attacdreed to the previouslly executed transittion compuites some value whiem is stroned im a variable of the descriptinan of the actual statite) )
- the memthers of the secombl .group arriiwe by inputionch seme meessages
- fiimallyy, the parametters of the last grøup are computed oy some procedure atthadthed to the present transittion; i..ee., they are "borm" im the actuall stattee.

The parametters oriigiimattead from any of these sources may be marniipullated by the procedures of the present tramsittisan.. Then, in anallogy to their sources, three thiimgs may happem with them:
- tliney may be left im the stapter for the next tramsittion
- tlmey may be output im a meessage, and fimallily
- tliney may die (i..e., they are neither sttorred nor output).

This grouppiing of parametters may be specifficed im the folldowing slots;: parametters_from_prrectlecterssior, parametters_tho_succerssomm, parrametterrs _from_imputt, parramecterrs_to_outtpuit; all otliner parameters are handled as of the thilird type..

Fuirtherrmore, we may give some other imfonmationn on tramsiitiodan, too. For example, we cam speciffy how amd where tline tramsittigon may be intermupteed, what is itts tirme duratisan e.t.oc.e

The resultimg frame is giwem bellaw;
frailie transition;

\section*{state:}
imputt:
outputt:
next situter:
enabling_prefdicedte:;
actions;
parraffleters firoit_predecusbson:;
pararmate ersf rof flimpott:
paraaeters_to_fuccessor:;
parameters_to_outpult:;
intennupletabdeyw:
interruption spoints:
aetaslot range: (before_input, after_imput, werforejectiien, after_actim, luefinif_outpuit, after_oulpui)
end
camjinaterrupt:;
tifinejifuration:
Betras ot defaullt:0;

Let. WS see an examplle. A typicall tramsïtion off the tramsportt protacol is describted as follbaws;:

```

 is jutramensittion!
 statustclcsed;
 input:TT_COHTheqj
 ~ultputiN CONTEQ;
 meskt,_5tate wwaityoforneetwook, comnsction;
    ```




end

\subsection*{3.2.2. The declarationan frame}

In this frame we may speciffy the set off alll straters amd transittionms of a particular compomernt. Of course, thesce dataz are awailable im the descriptiionms of tramsittionns, nevertheless sucth redundant information may imcrease readibiliitty,s amd thus iitt cam be useffull.
```

fraee declaration;
cорромппп!;
states:;
transitions:;
imput_messaques;
~utput messages:;
nd

```

As an exampplle, we defiime the declaration of the whole comneetiooh establiiscreament phase of the tramsport protrocoll entiitty workings im class 0 .
frate dedaration of comnection_establi shement;
is_ardecdaration;
cmaponant:tpe;



and

\subsection*{3.3. Dessoriptiom of messages}

The messages needed im the problems rehatted tom protoeels afe off several different types. As examples, we eam merntiom the servicice
 layerf. The deseriptiom of these difffermit types of mesesteses depends on the particular place where they are used. Henee, we do म⿴\zh11 sugctst a gentrah frame for deseribbing ahly types of merssages. Insteadi, we provide some frames for deseribbing the PDU's of the

 definitiichms femeralise to other etirculmstanees eatillyy.


```

traile tpdu:
lemgthy;
metaslot format:oinary;
ranqei0,1,···.,254i;
end
fisedjpart:;
variablle joartio ;
datajiciellat:;;
end
fraime variablejpart;"
paranecturns!;
isetaslot range!sequence_of_"parametter"_ imjitancess;;
cardinality:1255.
end
checksum:;
metaslot constraint: it class is not 4 then emptyim
end
end
frame fixead_part;
tpdu_memitionico:
tpou joobetif
credit:;
destimatiomjueff:!;
source_ref!;
other:i;
end
frame parameter;;
paraffitaeercoode:;
metaslot format:binary;
ranoe:0,1,... . 2555;
end
parameterjbergten:i;
metaslot format'..binary;
ramgevOll,...,44B;
end
parameter_valuet;
end
The follbowiing frame specifiems the CR tramsport data unit;
frame connection request;;
is_attpdim;
fixed part:frame tpdu_mnemonic:CNA;
tpdu_code:1110;
credit:0;13
destinatiom_ref:0,i,
souncrefef:i
other:fr_outher:
end

```

```

 end
 end
fraime fr_otheri;
class;i;
metaslot rangeag(0, 1, 2, 3,4;
end
option!frame format:;is
metaslot range:normal, extended;
default:normali;
end
expIIciiteeflow_comtrol:;
fitag1.0t range!yes,nm;
default:yms;
emd
end
end
A parametter, e.g.g. the tpdu_size, cam be specifiieed as fohlpows:

```
```

fre租 tpdu_5ize%
is_a;parametter;
paramï\#ecrgodeíll00 0000;%
parafictter__length: li;
parar\ituefyadue:;
fint23,1-1 rangeí8192,4096,2048,1024,512,256,128;
Egm5toinut!iifl
512,258,128)|;
dexaulut: 12Bi
end
end

```
4. Usimg the frame-based specificattion as a knowledge-base

The specifiicattion obtaimead by usiimg the frames desepribbed abeve defiimes the protacoll complletely. If, howewer, we would lilke ta put the whole thimg imto work (automatic implemeqritation), them we must speciffyy the "actiwe" part off the systteem, too. This aetiowe part works as am "imfereance engime" over the knowledge base comsistinng off the specification. Whe have two difffermemt posssibibilitiiees ta formallise this "imfereance engime". Tracditionally, we may giwe it as a separate procedure which uses the frames im the knowledge base as abstract data types.. Im most frame based systeams sueln procedures cam be formalisead easilly as frames. The other way, fiitttinng better to the philocsanphyy of the frame-besead systeme, is ta diviide the activittieess imto litttlee pieces amd asssocciate these pieces ta diffferremt frames as demoms.. In this way the "imrearemee engime'" iss disttribtuttead over the specificattiom amd thus, activitileess are localissead to the appropriate places withere theyy shouldd be used.. Because of the lack of space, we do not treat here defimittions for the "imferrance engime"; they wilh be presemteed ehseewhere. Doimg so, the giiwem specificattion cam be considereed as the maim body off thee (experimemtal)) implemernttatiom of the protereol im questiom. Similar is the siiturattion witffr the valiidationam amd eonversiom of flime protocols; im fact,n one cam äugment the specificattiom willn demons or separate frames defimingg procedures ta eope with the problleams C31.

\section*{Referemces}
[1] Barri, A., Feigeantmaum, E.A., The Handboolk of Arttificiaal] Intelliggeance I-III.. (secamed ed.)) HeurisJTECHH Press, Stanfordd, 1986.
[2] Chwrng, R., A mathodology for protocoll desiigm amd specificatiom based om am extremded startte tramsiittion moodel. ProocAnth Sigyonma'84, Symp. Comm. Arch. \& Protocols, Mbontrieal (Canada)) 1984, pp.3.4-41.
[3] Chnorquett,N., Fribourgh,L., Maubousssin, A., Rumable Protocoly Spercilications Usimg the Logic Interpreter SLCDGs, im Protacoll Spaccificatiom, Testiongy amd Vearificationn V. (ed. M, Diaz), Elsevier Seiemce Publishers, 1986..
"

\title{
KNOWLEDGE BASE MANAGEMENT ON THE PC.
}
P.. Koch

Computing Applications and Services Company
H-15ø2 Budapest 112. P.O.B.. 146 .

Abstractt. In this paper we briefly discuss some tecnnicai aspects of building knowledge bases (KBB)) within the limits of the PC. A simple method called Knowledge Base Partitioning and Chaining (KBPC)) is presented which can manage KBs breaking these limitts.

Keywords. Expert system, knowledge base partitioning and chainimg, expert system shellss, taxonomy networks.

\section*{1. INTRODUCTION}

In the last few years expert systems - probably the most pragmatic applications of artificial intelligence ((AI)) - has entered the way of commercializatiiom. These means that large number of tools and applications are offered for sale for users working in businessi, technollogsy, medicime, geology etfir. The hardware for these products ranges from the PCs up to the specific LISP machines and the power of the tools increases accordingily. Due to the wide variety of tools ((shellej for different type of applications the knowledge engineers (KE) tend to prototype and refine expert systems using these tools instead of direct AI programming in LISP or PROLOG.. The polarization within ES development is clearly reflected by the capabilities of the tools on the market [.1], Large, strategic applications require high-powerr, high-cost software (KEE, ART, KNOWLEDGE CRAPT, LOOPS etc.) and costly LISP machines to run them.. On the other end of the range small-scale expert systems may need only an IBM XT or AT and a developmental tool of a few hundred USD ((INNSIGHT 2n EXSYS, M.1, PC PLUS etc)). This latter group of tools and applications is what we call "1ow-tech" AI.. In the following we discuss the problem of knowledge base ((KB)) management in lowtech expert systems..

\section*{2. THE KNOWLEDGE BASE AND THE HARDWARE}

It is well known that the crucial issue for the performance of an expert system is its knowledge base.. The three most important factors influencing the usability of a KB are:
- the quality
- the complexity of the knowledge in the KB ,
- the amount

Here we do not discuss the first two issues roughly saying that the larger the knowledge base the better the ES works.. Different types of problems may require different knowledge representation ((KR)) formalisms to apply 【2】. The most commonly used KR techniques are
- production rules
- frames
- semantic networks
or the combinations of these. While the production rules are relatively easy to implement on the PC, the other two techniques are rather menicory consuming.. Due to thiss, practically ftill PC range ES shells and applications use rules to formalise domain expertise and meta-knowledge applied.. This obviously restricts the complexity of the knowledge we can use which, in turn, decreases the "expertise" of PC-range expert systems.. As its name suggestrs, "low-tecil" AI has the primary goal to implement the simplest AI ((at present mostly ES)) techniques on the low-end computerss, that is, , on the PCs (by PC here we mean the (BM PC and compatibless, although the McIntosh is coming up)). The idea behind this strategy is likely to make the elements oif this relatively new and promising technique available for a large number of end-users at reasonable investment ((sw, hw, mental effortt)).. For low-tech tool vendors the above say that their shells should run on "stamdard" configuration IBM XT/AT machines under MSDOS ((it should be noted that the spread of 38 b -based machimess, PS2/OS2 and workstations may change the markett)). (Ab the task is the development of expert systems with KBs ((rule bases)) large enough to produce acceptable advices as "domain experts" and small enough to work under MSDOSS..

\section*{3. ALTERNATIVES FOR THE PC}

The task formulated in the previous section is somewhat contradictory.. ES and shell developers usually adopt one of the following methods to cope with this problem
- the use of plug-in extension cards
- the compilation of the KB
= the use of traditional ((mon-AI)) programming languages to implement the tools.

Plug=in cards like EMS or Gold hill"s HummingBoard are good sollutions if do not insist on the tuse of "standard" configuratiom. The other two techníques need no extensionss. Instead, they try to shrink the knowledge base (without the loss in the amount of knowledge)) and the code that makes the knowledge work. The KB compilation may effectively free memory space but the elements of the compiled KB cannot be modified without recompilatiom. The use of traditional languages (mainiy C and Pascal) is a strong tendency amongst the tool developenss. Even if good results can be achieved neither of the latter two methods offer a final solution for the probilem. During the phase of ES refinement and extension the amount of knowledge ( the number of rules, objects etc)) rapidly grows exceeding the capabilities of the tooll. In the following section we briefly describe method called KB partitioning and chaining (KBPC)) which proved to be useful in solving the task above..

\section*{4. KNOWLEDGE BASE PARTITIONING AND CHAINING ((KBPC))}

The idea of KBPC comes from the simple observation that in a number of cases a larger KB can be subdivided into essentially imdependent partitioms.. For instance the KB partition (subset of rules) ) used by a medical expert system to interpret clinical lab data for a patient normally independent from the rules used to reach a final diagnosis or presenting treatment recommendationss. These partitions are usually not perfectly separatted: ithey communicate through a set of common KB elements (objects and hypotheses)). These common elements represent the intermeaiate results archieved during the evaluation of a partition and passed to one or more other partitiom(s). In technical Thems each partition can be represented by a tripilee, <Riin Hilioili>, where \(\mathrm{Ri}_{n} \mathrm{Hi}, \mathrm{Oi}\) are the ith subsets of the set of rules (R) H , hypotheses ((H)) and objects (©)) ), respectivedyy. Each triple is a "self-contained chumik" of knowledger, that is, a set of hypotheses to be verified, the associated fules to infer them and the objects used by the rules. Discovering the real partitioms in the knowledge of the domain expert is not an easy task since in most of the cases the expert is unable to articulate his/her expertise [13]. It depends on the skill of the knowledge engineer to find meaningful partitions during the phase of knowledge acquisition. There are many ways to implement the KBPC method. Here we briefly outline technigue we adopted for our ES shell, GENESTSS.
For backward systems we use method called 'hypotesiss ordering". This can be performed in the fellowing ways:
- direct ordering
- using problem taxonomy network.

In case of direct ordering the knowledge engineer defines the partitions over \(H\) and the system autematically constructs the associated subsets of \(R\) and 0 , The fesult \(\theta\) 圭 this precessinis a set of ( (usualiy felated) triples.
When using the problem taxonomy network the knowledge engineer is allowed to formulate the expligit desexiption of the taxenomie relations among the elements of the prebiem space (is:e the hypotheses to be verified) using the hypethesis net(s)) (䊵).

For instance, in a medical application the knowledge engineer can construct the taxonomy of a disease family starting with the generic disease ((as the root node)) and completing the network with the specific diseases to be diagnosed (as terminal nodes)).. In this case the HN determines the "chains of reasoming" leading to thehe temminailal nodeses (fifinialal diragnosesłs). Thilhe setet nadeses ((lnypotheses)) along these chains are the different partitions of H. Againh, thee system corllleatss thosse and onllyy tiloses nuiless and objects for a certain partition of \(H\) which are necessary for the chain of reasoning represented by that partittiom.
For forward cases we use the question nets ( \((Q N)\) ). The technique by which QNs support KB partitioning is similar to that of \(H N s\), , so we do not discuss it here. Note, that apart from KB partitioming, QNs are very useful for explicitly and dynamically control the way of data collection ((questioning)) during the consultattiom.
We mentioned that the KB partitions are not completely disjumatt. For instamce, rules in one partition may infer value(s)) for an object in another partition which uses this object to reach its own conclusicmss.. KB chaining is the way to organize the activisation of KB partitions and the information flow between them. Chaining means swapping," "twoo. When the system evaluated a partition and determined which partition is to call next it saves the intätrmediiate data and the system status and loads the selected KB paantitibon firom diskl. Affeder thatat, usinigng, thene intermediate data the system continues problem solving by evaluating the loaded KB partitiom. Selecting the partition to be loaded performed dynamically taking into account the current state of the consultattiom. By the use of KB chaining loops can also be organizecd:: this means that the same partition can be reevaluated later if necesseny..
KB chaining allows the knowledge engineer to navigate over a
larger KB keeping only that partition in the memory which is necessary to work witho. The KBPC method proved to be useful for medical applications in our practice and in others using GENESXS..

\section*{5. ARRGUMENISS HEOR MAND MACAIDNSTI}

In this section we list the advantages and shortcomings of KBPC in comparison with the techniques mentioned in section 2.

\subsection*{5.1. Advantages of KBPC}

The KBPC method has the advantage over the others in section 2, , that it "breaks" the memory limit of MSDOS and the total amount of knowledge used by an ES do not depend on physical memory available.. The knowledge engineer bias to keep in mind that the size of only a single partition is restrictect. Using KBPC he can take the advantages of a much larger KB than a single partition fitting in the memory. Another advantage is the high level modularity of the KB. This makes the KB maintanance much more convenient and safe because individual partitions can be modified independently and the effect of the modifications are usually do not propagate over the other partittionss.

\subsection*{5.2. Shortcomings of KBPC}

Unfortunattelly, there are some shortcomings of the method as well. First of all, partitioning not always possiblle, and even if it is, \({ }_{n}\) the construction of meaningful partitions strongly depends on the skill and experience of the knowledge engineer.. From technical point of view the administration of KB swapping and chaining during the course of consultation increases the response time which may cause inconveniencies using the system. Furthermore, , the "swapping time" depends also on the organisation and the maintenance practice of the ( (hard)) disk a factor changing at different users.. Another disadvantage of KBPC is the more complex control structure which results in larger size of rihe run-time code which, is turm, decreases the maximal size of a single partitiom..

\section*{6. SUMMARY}

In this short paper we discussed some problems of KB management on the PCs. We outlined a technique called KBPC to "bmealk" the memory limit of standard configuration PCs. In comparison wit.h other techniques ((plug-in cardss, KB compilation etcj we cah srape that KBPC has the advantage that the size of only a single \(K B\) partition is limited by the physical memory and not the thotai amount of knovledge.. The main problem with KBPC is that there are cases when partitioning is imposssible and the whole nexinoa strongly depends on the skill of the knowledge engineer.

\section*{REFERENCES}
1. Expert System Stratequies, Vol. 4n No. 1n 1988.
2. Klahre, P., Watermam, D.A. Expert Systems.. Addison ionsley Publishing Co.n 1986.
3. Kohouth, L.T., Bandler, W.-fKnowledge Representation in Me iioine and Clinical Behavioural Science.. Abacus Press, 1986.

\title{
TOWARDS AN INTEGRATED VIEW OR \\ DATA PROCESSIMK \({ }^{\prime \prime}\) ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING
}

\author{
P. Krauth \\ Software Department \\ Research Institute for Measurement and Computing Central Research Institute for Physics \\ Hungarian Academy of Sciences H-1525 , P.O.B.. 49/, Budapest," Hungary
}

\begin{abstract}
The three area of computing ((DP \(\left.\|_{/ \prime} A_{/ /} S_{E}\right)\) ) have traditionally different user and developer communitiess, and incompatible product sets. The article tries to identify a viewpoint from which these areas look similar. Having surveyed the currently available productson, it is recognized that a knowledge-based dictionary is or can be in the core of any DP and AI-application and SE-environment. This'fact together with a current standardization process can substantially inluence the way of how software will be manufactured in the future.
\end{abstract}
Keyword. Artificial Intelligemce," Data Processimgg,

\section*{1. INTRODUCTION}

In the eighties there have been rapid and successful developments in the research and application of data processing ((DP) , artificial intelligence ((AI)) and software engineering (SE)) techuicsir, as exemplified by the current proliferation of products in all of these areas. The fact," howeverr, that the primary motives behind these areas are fairly differeatt, resulted in markedly separated user/research communities and created substantial mutual misunderstandiugss..

In particular", the main goal in data base research is to achieve maximum performance in terms of extremely large data, number of concurrent users and response times. On the other hamd, artificial intelligence research strives for increasing the functionality of a system, incorporating complex knowledge rather than bare data only", and simulating human-like behaviours such as
problem solvimg,, planning etc. Finally \(y\), the software engineering activities concentrate on the overall quality of a system balancing system requirements against maintaimabiilitity, ensuring user satisfaction and applying consistent technics during the entire life of the system..

However,, despite all of their differemcess, the application of \(\mathrm{DP}_{\text {, }}\) AI and SE technics is identical in one respect: each of them improves our abilities to produce more complex software systems and to utilize technological progresses in hardware. At a first glance, this seems to be fairly obvious statementt," but it represents an important shift in emphasis and establishes a good basis for developing an integrated view of \(D \mathbb{P}_{\|}\)AI and SE. Looking 'at these areas of computer science from this very pragmatic point of view, has a lot of advantages.. In this way," for example," it becomes possible to get rid off all of the misjudgements attached to DP," AI and SE. Just to name a few of them:
- data processing is nothing but a rather complicated way for handling simple data files,,
- with the available technics of AI ((even on a PC)) one can get close to the understanding of human thinkimgy,
- with the advent of software methodologies, the problem of producing quality software has been solved once and for all.

One can also recognize an on-going cross fertilization of ideas and technics emerging from the aforementioned areas. Last but not least,, this viewpoint could also be useful in trying to predict future developmentrs..

In Section 2,3 and \(4_{n}\) first we give a summary of the achievements and the apparent shortcomings of the different technics in the areas of \(D P_{1 \prime} A I\) and \(S_{k}\), respectivelly. Them, in Section 5, 6 and \(7_{n}\) we report products currently on the market making good use from the interaction of the various technics. In Section 8 " as conclusiiom, we try to outline the shape of possible future systems based on the integration of \(D P_{, \prime \prime} A I\) and \(S E\).

\section*{2. DATA PROCESSING}

The overwhelming majority of today's applications is data processing software, and, because od this,", based upon some kind of database. This is why the practical importance of database management systems ((DBMS)) cannot be overemphassiizeed..

Traditiomally \({ }^{\prime \prime}\), the main technical problems which a DBMS has to cope with,, are:
- concurrency control in a multi-user application environment
- effective management and storage of extremely large amount of data ((from hundreds of megabytes to gigabytess))
- recovery capabilities to protect data against system malfunctions

The first problem was solved by the introduction of the concept of transactions and the related transaction management algorithms. The second challenge enforced the page segmentation of the databases and the invention of powerful data access mechanisms ((ballanced tree,, hash coding, logical pointers and so on). Finally, the recovery problem has been eliminated lyy backup//restore functions and continuous journalimg.

Another technical problem which has been gaining increasing attention since local area networks had appeared, is the physical distribution of data throughout a network. Although distributed database management systems are already on the market ((e.g. INGRES," ORACLH," SYBASE," EMPRESS etc.)", these products have not yet matured enough and much more improvements can be expected in the near future. Neverthelesss,, their appearence means that the fumdamental logical and algorithmical difficulties have been already overcome, and heralds a new era in DP-applicatioms..

Turning to more conceptual problems,, it must be noticed that the database research and development community have long been confromited with the problem of data modelling. From the very early years, diagramming technics ((e.g. Bachmann-diagram, Chen's en-tity-mellationship diagram), data description languages (e.g. CODASYL DDL )) and data dictionaries ((e.g. IDMS's IDD)) have been developed and used to aid the modelling activity. However, the usefulness of such tools and technics has been severely restricted, since the main contradiction between the physical level effectiveness of a particular DBMS and the logical expressive power of its data description method, could not be easily resolved. The former reguirement is essential at run-time and for the eamd-wsers. The latter is crucial for the development team during the entire life of the applicatiom, and consequemtly \(y_{1,}\) regarding the delivery time of the amendments or enhancementts, for the end-users," too. This problem is rooted in the fact that,, traditionally, a DBMS is evaluated primarily against run-time effectiveness," and," to meet the perfomance criterias,, the modelling capabilities were always compromised.

However, as a result of substantial progresses in hardware/software technologies (16- and 32-bit microcomputtenss, database machimes,, matured relational database technology etc.), , the growing popularity of database softwares caused recently that imeffificiency in database design has become a major obstacle in producing database applicatioms..

\section*{B. ARTIFICIAL INTELLIGENCE}

The desire or ", better to say", the challenge to build a machine similar to a mam, can be followed back to the medieval times.. Therefore, it is no wonder that a research direction within computer science ((called AI)) was born to explore the feasibility of using computer technics to simulate certain human-like phenomena like speech,, visiom, thinking.

However," despite the great number of smart programs developed through years of time, AI is still in its infancy and far from the original goal: to understand how the mind works.. Moreover, it turned out in between that those smart programs are not intelligent enough and there are opinions that they will never be.

What is then the use of AI? It stimulated brand new ideas and, as a by-product to the main stream researcm, we have now a collection of powerful technics whose usefulness has already been demonstrated by the proliferation of expert systems ((EXS)).

The main characteristics of these technics are their flexibility. This was required by the human brain's apparent high-level adaptation abiliity, and has resulted in software construction methods based upon concepts that unify data and process descriptions and neglec the usual strict distinctions between them. Such construct is \({ }_{n}\) for example, a LISP-expression which can be used for defining a data structure as well as for specifying a flow of controll. Similarly ((fact)) and also a small process fragment (onule)). The concept of frames ((or objects or schemas or units or etc.)) in the so-called frame-based ((or object-orientedi)) systems,, is an even more powerful way to combine data and processes where the values of the slots ((a frame is divided into slotsi)) can be either data or process descriptiom. Frames can also be organized into semantic network whicm, agaim, could behave either as a static or as a dynamic structure. The underlying mechanism for the latter is called inheritance, and enables for the frames to share easily properties..

The statement that data and processes are the same, is a fairly deep recognitiom. Beyond its philosophycal consequemcesi, it has led to the notion of knowledge whose well engineered collection ((kzmowledge base)) cam, in a knowledge-based application system, alone represent all the information about the static (data)) and dynamic ((processes)) characteristics of an application domaim.. The knowledge base is usually coupled with an inference engine which serves as a domain-independent mechanism for driving the knowledge.

The above outlined, general architectural framework for know-ledge-based systems works well in several ES-applications. Moreover," it works so well," and the ES-applications have become so important for their users that the so far neglected (much rather technical than conceptumall) shortcomings of the current AI-tools and technics have caused serious bottleneck in the spread of AI.

The most important deficiencies are the lack of tools to develop distributed and concurrently accessible knowledge bases, and also the lack of ways to integrate AI-systems with the more conventional computer systems to enable for the users to follow an evolutionary", as opposed to revolutiomary/, growing patm. This is becoming rapidly crucial because, after a transient period when the primary emphasis was on the personality of computimgg, the capa-
bility of a system to manage information coming from a variaty of sources (价man or computer), is beginning to gain vital importance. Unfortwatrelly, but understandamily, AI has not paid too much attention to this problem until recently..

\section*{4. SOFTWARE ENGINEERING}

Unlike AI, software engineering was born hand in hand with the traditional programmimg.. The aim was first only to introduce disciplines into the otherwise intangible art of programming ((sstunctured programmimgi)) but gradually its scope has been extended to other software development activities like analys:ïs:, desigm,, test,, documentation etc.

Nowadays,, software engineering covers all the phases and aspects of developing various sorts of software systems (bbusinesss, realtime, batch,, on-lime) and the knowledge how to develop software is organized into methodologies ((IOOURDON," SSADM," Information Engineerimg, JSD etc.). They are common in that each employs a consistent set of technics and procedures to control the development activity, albeit each uses different life-cycle model.. On one hand, a technic is a more or less formalized framework to carry out a specific task ((e.g. to draw a certain diagram)) and can often be automated, on the other hand, procedures are basically applications of technics and manpower to perform certain steps in the life of a software system ((e.g. perform quality assurance review,, make system test plam,, control change requestst,, perform logical data modelling etc.)..

Though methodologies appeared first in the mid-seventies their spreading was substantially delayed until recently (mid of eighties)) since their use was too tedious or expensive without costeffective automated support tools. By that time the wide availability of microcomputers/workstations and advances in user interface technics ((windowimg, graphic tools)) had made possible a breakthrough in the application of SE. As a matter of fact," every support environment has two basic componeatts::
- data dictionary
- graphic ((or at least screen-orientedid) interface.

Throughout the development different types of objects (ldiagrams,, specificatioms,, desigmss, test data, programs etc.)) are to be managed and among them multiple relationships ((a diagram is exploded into other diagram, a data group used in several data flow diagram, etc.)) are to be maintaimed.. In additiom, it is well-known that the software development as a creative activity is iterative and parallel in nature. For example, whem, during programmüng, it is frequently recognized that the design has to be modified, or a routine has to be adjusted to different hw/sw environmemtts.. Unfortunatelly this phenomenon is usual for all kind of the above mentioned objects. It implies that the objects can exist in different versions and variants.. This problem is solved by the use
of configuration and version control technics which is proviodedit by most of the current dictionaries.. That is why the data dictionary in software engineering is much more important even if from attractivity point of view," a good drawing interface is more appealing at the first glance..

The main problem today the methodologies and their supporting enviroments faced, is that there are too many methodologies and none of them good enough.. In fact," they cannot be good enough because every real project and every company ((after all the final purpose of a methodology is to be used in projectis)) have some particular requirements and characteristics that make hardly impossible to apply any standard methodology. That is why the real skill of a software engineer \({ }^{\prime \prime}\), is how to deviate from standards.. But having developed a company- or project-specific life-cycle model and a corresponding methodollogy, what about the tools? The tools are marketed and supported by software companies ((ammendments, enhancememitss,, new releasess," new hardware platforms etc.) ), consequemthly, must have a stable set of features. Howeverr, this prevents them to be used in a too wide variety of circumstances.

\section*{5. DATA PROCESSING AND ARTIFICIAL INTELLIGENCE}

An important point here is that more systems that are implemented, the larger and more complex the overall system becomes.. More islands of automation are created, but only rarely do islands coalesce; hence more gaps between systems are also createdi, this process often results in an unmanageable collection of information and tools from which the user finds it difficult to make an appropriate choice. Gaps are formed where we cross from automated systems to manual systems,, human decision making,, judgement and selectiom.

Integrating knowledge-based technology with data processing in business can close,, or at least shortem, these gaps,, and can make complex information systems appear more comprehensive and manageable to users.. Moreoverr, it can extend the scope of automattiom, tackle the high complexitty, volatility and uncertainity which are common in business activitiess, and increase competitive edge.

One way to realize such an integratiom, is to implement know-ledge-based languages or systems enhanced with functions required in DP -envirommemtts. As a first example, we mention the TOP-ONE system. TOP-ONE is a comprehensive applications implementation and delivery environment for business computer systems,, which contains a multi-wserr," mainframe implementation of the logic programming language Prolog,, specially designed and developed for the business data processing environment by Telecomputing pic.. It supports fully transaction processing oriented features such as concurrency controll,, resiliemce, recovery and securityz. It also be coupled with existing systems,, accessing conventional data stores..

Another example is the G-BASE object-oriented database from Graphael. It can manage all types of data: alphanumeriic,, text,", graphic, video," audio, programs and data from formerly incompatible databases. G-BASE can store virtually any amount of information without wasting critical resources,, because all data on disk rather than virtual memory. Implemented in LISP \({ }_{\prime \prime}\) it enables LISP methods and functions to be directly linked with data, describing how to manage the data, check or display them. Unlike other systems,, G-BASE permits the data model and structure to be modified at any time during the life of the database,, and the modifications can be performed dynamically. This is a very useful feature to construct," for example, generic database applicatioms.. G-BASE ensures data integrity through strict control measures.. As data entered or the structure modified, control functions can be activated to check the validity of the data and its relationships to other data. G-BASE also includes built-in security features to maintain data consistency in the case of a system crash or power failure.

The concept of object-oriented databases become increasingly popular," as other notable development efforts show. Among othersi, at MCC (Mircmoelectronics and Computer Technology Corp.: the US fifth-generation undertakimgj) at least two projects are devoted to object-oriented DBMS developmemti..

Another product called SAPIENS from Software Craftsmen Inc., uses expert systems concepts to application generatiom. The built-in expert system uses a comprehensive data dictionary as its knowledge base. The ERROS system from ERROS Computing Services Ltd., toon focuses on intelligent application generation but uses a theasaurus-based Inference Engine Database (IIED) as data dictionary. It is said to be a new concept employing AI-technics that use user data and data definitions to drive applications. IED can maintain an historical or a snapshot database,, allows roll back and recovery by journalling all database changes, and integrates three record structures:: relatiomall, hierarcmicall, network.

The other way for AI and DP integration is the most straightforward solutiom: to interface existing AI-tools to conventional DPenviromments.s. The best-known product taking this approach is the KEE (Kmowledge Engineering Enviromemt)) from Intellicorp Inc. which provides for the ES developers the international standard SQL (Sstrmetured Query Language)) interface to access data in conventional DBMSs ((e.g. ORACLE)). It is rumoured that other leading AI-companies ((e.g. Carnegie Group Inc.)) are going to take this approachn," too.

But not only the AI-companies feel the need to interface to conventional DBNE, a DP-product vendor (年mfinmation Builders Inc.)) decided to buy a smaller AI-company and its product ((Level 5) with plans to unify the latter with its own FOCUS system. A mainframe vendor ((BBull)) has gone even further by having developed a distributed knowledge base architecture ((ABCD)) where it intér-
faces through an Ethernet local area network three types of machines. One is devoted to user communicatiom, the second is running an ORACLE database and the third stores a knowledge base written by Bull's own ES shell ((Fळoll)).

\section*{6. ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING}

The story of using AI and SE technics together is not at all newr, and goes back to the beginning of the eighties when the AI-technics were beginning to come out of the academic research facilities. To illustrate this we mention the CALYPSO project at the Carnegie-Mellon Univ. to explore the feasibility and possible advantages of the use of AI in SE. A series of follow-on projects carried out for private companiess, shows well the conclusiom. Evem, there are some software gurus who do not even make any kind of distinction between \(A I\) and SE which is obviously false for the time being but it might not be in the future.

There are two basic approaches in combining AI and SE. The more obvious is to use flexible AI-technics to implement SE-tools.. This approach has been already touched in the previous section when data dictionary ((DD)) based application generation tools were mentiomed, and the DD was basically a knowledge base. But these tools are restricted to the business computing area. There are other AI-based SE-tools which are,, however," generic..

One of them is Graphtalk from Rank Xerox. It is build around the XAIE ((Xerox Artificial Intelligence Environment), and provides data dictiomary, graphic and project management tools," code generatorss, documantation aids and a lot more. The main feature is its tailorability which makes good use of its underlying flexible AI-languages ( (WISP \({ }^{\prime \prime}\) Prolog," Loops), enabling to introduce specificity either on the applied method or on the project or even on the organization level. In this respect,, Graphtalk heralds a new horizon for the applicability of se-tools..

Graphtalk is far from being alone with its approach. The Virtual Software Factory ((VSFI')) from Systematica Ltd., for example, uses similar concepts providing user-configurable design support system. It incorporates, an Integrated Knowledge Base System ((IKBS)) as data dictiomary. The IKBS has extremely generic structure and is capable of containing both of the method-specific information ((method modell, validation rules," object types," graph types etc.)) and user-supplied design data. Rule-based graphic and text design editors manage and present the required information on the screen after having been filtered through the method database portion of the IKBS. VSF can be configured to support whatever structured methods and documentation standards the user requires;, and provides direct integration with other tools. Currently, as standard configuratiomss,, it supports 5 methodologies ((YOURDON,, SSADM, JSD, CORE \({ }_{n}\) MASCOT 3) \({ }_{n}\) and is marketed aggressively at a very competitive price ( \(7000 \$\) for each )). Describing the core of VSF which makes possible the tailoring of VSF to a method's requirementss,

Systematica also coined a new term: Methods Engineering Work bench.

The other approach in combining AI and SE, is to take the other way round. The question here is what are the benefits of using SE-concepts in AI-system development? One must not forget that,, to whatever extent a system is knowledge-based, it is still software, \({ }^{\text {, }}\) and as such,, it is subjected to the more general rules of the software life-cycles (i.e. it should be desigmed, constructed," tested, there are versions etc.). In this respect,", for example," knowledge acquisition is nothing more than system analysis \(_{n}\) and an equivalent to software engineering is knowledge engineering.

Unfortunatelly, there is no established methodology for the development of Expert Systems. However," there are some on-going works in this area as well. One ((less importam(t)) example, is the Telecomputing pic. company's efforts (bmarketing TOP-ONE, section 5.)) to develop methodology to identify potential business applications suitable for expert system techniques..

The other one is more significamp. CCTA ((Central Computing and Telecommunications Agemcy) in collaboration with the Department of Trade \& Industry of UK has launched a national Expert Systems Initiative - the GEMINI Project ((Goverment Expert sysrems Methodology INItiative)). The project aims to establish an ES or knowledge-based systems ((KBS)) development methodology which will be made freely available to the information technology ((IT)) industry and users,, thus following the example of SSADM, the wellknown standard. They will take full account of the methods used to develop conventional IT systems. The method will offer inrerfaces to SSADM and it should also be able to interface to other methods to ensure that ES components and systems can be fully integrated with existing systems.

\section*{7. SOFTWARE ENGINEERING AND DATA PROCESSING}

It is well-known that \(S E\) can help much in DP-developmemt, in particular," in data modellimg. Still," the conversion of a model into an effective physical database design is a tedious task. This problem is solved by the ZIM database product from Zanthe Informatiom, Inc. Using this software one need not to convert the data model already in the form of entity-relationships terms into database schema definitiom, since the entity-relationship specification directly understandable by the ZIM database manager which itself is a full-feature DBMS with transaction processiumgy, recovery and application development facilities..

But the above approach is not too commom. It is more general to use a DBMS to implement a data dictionary which is, as we have seen," the core of any SE-tooll. In fact,", every DBMS uses some sort of data dictionary for storing the metadata of a database. Some DBMS-product went even further in this direction putting application ((or other)) data into its own dictionary (e.g. iDMS's Inte-
grated Data Dictionary," ORACLE's Data Dictionary) . Moreowerr," DEC has announced recently a new release of its Coininon Data Dictionary" stating that it has certain object-oriented flavour using an entity-relationship-attribute modell.

ORACLE Corp.'s activity in combining DP and SE technicss,, is especially remarkable. It does not only supply a large set of DBMSproduct but," also," it is becoming a big SE-tool vendor integrating state of the art drawing facilities with its ORACLE-based development dictionary to be used within its own proprietary development methodology..

Finally" there is one more activity worth mentioning in this context. Standards organizations ((ISO ", ANSI)) are currently working on an interface standard for the Information Resource Dictionary System ( (INRMSN) . It is the only standardization activity in the DBfield, and if it is succesful it can impact to a large extent the future developments in the DP as well as in the SE areas..

\section*{8. DATA PROCESSINGG, ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING}

The message of this article is very simple, almost triviali: conceptually", DP \(A\) and \(S E\) are the same. It is so because a flexible data dictionary ((or knowledge base)) must be an architectural component of any \(D P_{\|}\)or AI-system or SE-enviromment.

This statement has far-reaching implicatioms. It suggests that the DB is the most important component of any application system. The question can then be raised: what about a real-time system which, because of performance reasoms, cannot afford the extra overhead of the run-time data dictionary accesses? Obviousilyin, there will be always systems which will not employ run-time DD. However,, even their development environments will utilize some sorts of data dictiomary. And what is the difference between the system as represented in the development environment and the system running in a production environment? The only essential one is performancer..

It seems to us that,, for every system, there are a development and a production versiom, and the two differ only in performance ((or other non-functiomall)) requirememt.. The situation is very similar to the one when somebody writes a document with the help of a word processorc. There is a version of the document stored in the computer in a format which one can easily modifyy, and there is a printed version which can be used effectively (mo need for computer, one can page it as he wants etc.). Analogically reasoning \({ }_{n}\) the generation of the production version from the data dictionary which embodies all the knowledge about the system under developmentt", will be as easy as printing a documentt, and one can generate a running system for different \(\mathrm{hw} / \mathrm{sw}\) environments with the same ease as one can print a document on different printers..

This is not to say, however, that DP, AI and SE-technics are currently interchangable, still we have got the feeling that they are coming closer and closer to each other," and, perhapss, it is not too risky to predict that in the next millenium the software development will be mostly knowledge acquisitiom. This again will not solve the problem of how to construct good quality software once and for all," but it will lift the problem onto a higher levell.

\section*{LISTt OF AUTHORRSS}
\begin{tabular}{|c|c|}
\hline ARATÓ, A., & Central Research Institute for Physics, Hungarian Academy of Sciences," Budapest \\
\hline BENCZÚR, Ȧ, & Eötvös Lorănd University \({ }^{\text {n }}\) Budapest \\
\hline BODÓ, Z., & Computer and Automation Institute \\
\hline & Hungarian Academy of Sciences," Budapest \\
\hline BRUUCHLIER, E & Institute for Machine Docximentation, Graz \\
\hline BRIUCOKLER, H., & Institute for Machine Documentation, Graz \\
\hline CSABA, L. & Coiip)uther and Automation Institute \\
\hline & Hxingraxian Academy of Sciences," Budapest \\
\hline CSER, & Technical University of Budapest \\
\hline CSUHALI-VARJU, E., & Computer and Automation Institute \\
\hline & Hungarian Academy of Sciences, \({ }_{\text {n }}\) Budapest \\
\hline CSURTGAAY, & Hungarian Academy of Sciences, \({ }_{n}\) Budapest \\
\hline ECSSHII-TIOTH, P & Computer Research and Imnovation Center \({ }_{n}\) Budapest \\
\hline FELLNER, W.D., & Institute for Information Processing." Graz \\
\hline HAASE, V.H., & Technical University of Graz \\
\hline HARRUNG, Go., & Institute of Imformatics - University of Vienna \\
\hline HEIRNAMI, A., & Computer and Automation Institute \\
\hline & Hungarian Academy of Sciences \({ }_{n}\) Budapest \\
\hline HUBPER, F., & Imstitute for Information Processing \({ }_{\text {/ }}\) Graz \\
\hline KAPPPE, \(\mathrm{F}_{\circ}\), & Institute for Information Processing \({ }_{\text {/ }}\) Graz \\
\hline KNUTH|H, E., & Computer and Automation Institute \\
\hline & Hungarian Academy of Sciences \({ }_{n}\) Budapest \\
\hline KOCIH, P & Computer Applications and Service Company" Budapest \\
\hline  & Computer Research and Innovation Center, Budapest \\
\hline KRAUTIIH, P., & Central Research Institute for Physics \({ }_{n}^{\prime \prime}\) Hungarian Academy of Sciences \({ }_{n}\) Budapest \\
\hline LEWANDOUSKE, A., & IIASA \(_{n}\) Laxenburg \\
\hline MA以E, B., & Institute of Psychology = University of Graz \\
\hline MARHUSS, A., & Computer and Automation Institute \\
\hline & Hungarian Academy of Sciences \({ }_{\text {/ }}\) Budapest \\
\hline MIITTERMMEHR, R., & Institute of Informatics - University of Klagenfurt \\
\hline MOLIK, \(\mathrm{H}_{\text {\% }}\), & Technical University of Graz \\
\hline MOUNAAR, C. & Computer Research and Imnovation Center," Budapest \\
\hline OLASZY, Ge, & Linguistic Institute \({ }_{n}\) Hungarian Academy of Sciences," Budapest \\
\hline PEENZ, F., & Institute of Informatics - University of Vienna \\
\hline PFURTSSCHTHUER, Go, & Institute for Electro- and Biomedical Technology (raz \\
\hline RAUCICH, Wo., & Institute for Information Science - University of Graz \\
\hline RUUTTIKAY', Z., & Computer and Automation Institute \\
\hline & Hungarian Academy of Sciences, Budapest \\
\hline SCHUULTER, G*, & Institute of Psychology, University of Graz \\
\hline SCHMMARTZ, G., & State Hospital", Graz i \\
\hline STÖGEREPR, J.K., & Institute for Information Processing \({ }_{\text {r }}\) Graz \\
\hline SZOTS, M., & Computer Applications and Service Companyn Budapest \\
\hline TAMAS, Pe, & Technical University of Budapest \\
\hline TSCHEHIPGI, Ma, & Institute of Imformatics - University of Vienna \\
\hline VAINA, A.M., & University of Tamperen Finland \\
\hline VASPPCOTI, T., & Central Research Institute for Physics, \\
\hline & Hungarian Academy of Sciences, Budapest \\
\hline VAMOS, T., & Computer and Automation Institute \\
\hline & Hungarian Academy of Sciences, \({ }^{\text {a }}\) Budapest \\
\hline WEEINHARTT, H., & Institute of Informatics, University of Klagenfurt \\
\hline WIUEGGER, B ., & Technical University of Graz \\
\hline WUNKLER, F., & Research Institute for Symbolic Computation \({ }^{\text {I }}\) Linz \\
\hline
\end{tabular}
```


[^0]: *) Work reported herein has been supperted by the össtemneiodriseche Forschungsgemeinschaft and by the Fonds zur Förderumg der wissemschaftlichem Forschumg, Projekt Nf. P6763.

[^1]: This paper is a shortened version of a paper by F. Huber,r H. Maurer, and F.. Makedón to appear in Journal of Microcomputer Appliceationss.

[^2]: ${ }^{5}$ This paper is the shortened version of HASA Working Paper WP=88=48

[^3]: Funding of the sevelopment of the HiBOL-2 enviromment by the Austrian Forschungssï̈rdenungafonds, grant \mathcal{F} 5341, is gratefully acknowledgech.

[^4]: Macintosh ${ }^{\text {rM }}$ is a trademark of Apple Computer Ine.
 Presentation Manaer ${ }^{\text {M }}$ is a trademark of Microsoft Corp.
 $\mathrm{OS} / 2^{\mathrm{HM}}$ is a trademafk of Microsoft Corp.
 Smallallk ${ }^{\mathrm{FM}}$ is a trademark of Xerox Corp.

[^5]:

[^6]: *such fuiielioii exists according to a theorem of Kolmogerov

[^7]: Keywords: Computer Graphics, Graphics Editors, CGM, CGI, EDEN

[^8]: "we will not deal with pixel-oriented prograns (paint programs) here, athgug EBEN can alse perfarm as a paint progan by proxiding additional operations on the objects cell ncray and fixeh mrray.

[^9]: ${ }^{\text {a The deftnition language for compound objeets is currently } \mathbf{C} \text {, but the possibility of defining }}$ them in an object-oriented language (C-ffor specially defineed) will be further investigated.

[^10]: ${ }^{2}$ As you might have guessed; this paper was prepared using TEX and EDEN (far the figures).

[^12]: * PE definitions have least defined relations (least fixpolnts) in every model of the basic similarity type.

